

Sn-doped CeO₂ Nanorods as High-Performance Electrocatalysts for CO₂ Reduction to Formate

Shunlian Ning,^[a] Zhiwei Guo,^[a] Jigang Wang,^[a] Shaobin Huang,^[a] Shaowei Chen,^{*[b]} and Xiongwu Kang^{*[a]}

Electrochemical reduction of carbon dioxide to formate provides an effective way to solve the environmental problems caused by excessive carbon dioxide emissions and produce value-added products. Herein, we report the preparation of a Sn-doped CeO₂ catalyst, where oxygen vacancies are formed by thermal treatment in Ar/H₂ atmosphere, leading to enhanced carbon dioxide electroreduction to formate. The Faraday efficiency of formate production is found to reach 81.10%, with

1. Introduction

Extensive use of fossil fuels leads to the release of a large amount of CO₂, which poses a significant threat to global climate and environment.^[1] Therefore, high-efficiency and lowcost technologies are urgently sought to reduce CO₂ in the atmosphere,^[2] in which electrochemical CO₂ reduction reaction (CO₂RR) represents an effective strategy to convert carbon dioxide (CO₂) gas into value-added chemicals (e.g., CO, CH₄, C₂H₄, HCOOH, etc).^[3] However, CO₂RR generally requires an excessive potential, as the Faraday efficiency (FE) is low and product selectivity is poor due to the competitive hydrogen evolution reaction (HER), resulting in a decrease of the carbon products.^[4] For instance, and electroreduction of CO₂ to formate has been attracting a great deal of interest, as formate is a stable non-toxic liquid that has great market values in diverse applications, such as hydrogen carrier systems^[5] and formate fuel cells.^[6] Yet, this CO₂RR process involves multiple electron/ proton transfer steps, and it is of fundamental significance to develop effective electrocatalysts to facilitate the reaction. Towards this end, a range of bimetallic and non-metal/metaldoped catalysts have been developed.^[7]

Ceria is a well-known material for oxygen storage^[8] with strong metal-support interactions,^[9] but its performance is not ideal as a CO_2RR catalyst due to its poor electronic conductivity

[a]	S. Ning, Z. Guo, Dr. J. Wang, Prof. S. Huang, Prof. X. Kang School of Environment and Energy South Ching University of Technology					
	Higher Education Mega Center, 382 East Waihuan Road, Guanazhou					
	510006, China					
E-mail: esxkana@scut.edu.cn						
[b]	Prof. S. Chen					
	Department of Chemistry and Biochemistry					
University of California						
	1156 High Street, Santa Cruz, CA 95064, USA					
	E-mail: shaowei@ucsc.edu					
	Supporting information for this article is available on the WWW under https://doi.org/10.1002/colc.202100445					

a geometric current density of 9.13 mA cm^{-2} at a potential of -1.10 V versus reversible hydrogen electrode. Density functional theory calculations show that the incorporation of tin into CeO₂ promotes electron transport, lowers the energy barrier to form formate through HCOO*, and increases the selectivity of formate. Results from this study highlight the importance of metal-doping in CeO₂ towards the selective reduction of CO₂ to formate.

and competitive hydrogen evolution as electrocatalyst. A range of strategies have been adopted to improve the catalytic efficiency, where surface modification via metal doping represents an effective approach. For instance, Zheng and co-workers reported that CO₂ adsorption and reduction was enhanced with Cu-substituted CeO₂ due to the generation of multiple oxygen vacancies, and the best catalyst showed an FE of 58% for CH_4 at -1.80 V vs. RHE.^[7b] Bao et al. argued that the Au-CeO_x interface enhanced CO₂ adsorption and stabilized key carboxyl intermediates (COOH*), leading to a high FE of 89.1% for CO production at -0.89 V vs. RHE.^[7a] However, studies of the catalytic activity and mechanism of Sn-doped CeO₂ for CO₂RR have been scarce.^[10] It has been shown that Pd,^[11] Sn,^[12] Bi,^[13] and In^[14] are effective in selective reduction of CO₂ to formate. Among these, tin (Sn) is a relatively inexpensive and environmentally friendly metal and has been attracting extensive interest as an excellent electrocatalyst for CO₂RR. For example, Qiao et al. prepared a Sn-doped copper alloy that selectively produced formate through the Sn sites.^[15] This is mostly due to the excessively high potentials required for HER.^[16]

Herein, we report the facile synthesis of the Sn-doped CeO₂ nanorods via a facile hydrothermal method. After thermal annealing in an Ar/H₂ atmosphere, the obtained catalyst showed a remarkable electrocatalytic activity for the production of formate from CO₂RR in a CO₂-saturated NaHCO₃ (0.1 molL⁻¹) electrolyte, and the sample with a 10% mass of Sn shows the highest FE (81.10%) and current density of 9.13 mA cm⁻² at -1.10 V vs. RHE. This high activity and selectivity are largely ascribed to the manipulation of the electronic structure of the catalyst surface by Sn doping (Figure 1a). Indeed, density functional theory (DFT) calculations suggest that the introduction of Sn species in CeO₂ facilitates the formation of HCOO*, a key intermediate for formate production, whereas the generation of CO and HER is suppressed.

Articles doi.org/10.1002/celc.202100445

Figure 1. Schematic illustration of the preparation for CeO₂ and Sn-doped CeO₂ nanorods.

2. Results and Discussion

To prepare Sn-doped CeO₂ nanorods, pristine CeO₂ nanorods were first synthesized via a hydrothermal method, and then mixed with a low concentration of SnCl₂, followed by thermal annealing in an Ar/H₂ atmosphere, as schematically illustrated in Figure 1a (details in the Supporting Information).

The formation of CeO₂ nanorods was indeed confirmed by transmission electron microscopic (TEM) measurements (Figure 2a), featuring a length of ca. 50 nm and a cross-section diameter of ca. 7.5 nm. With Sn doping increases, the nanorod morphology remained practically unchanged (Figure S1). Figure 2b shows a high-resolution TEM image of Sn-CeO₂-10%, where well-resolved lattice fringes can be observed with a d-spacing of 2.70 Å and 3.14 Å, corresponding to the (200) and (111) crystalline planes of CeO₂ (JSPDS Card# 43-1002), respectively. Furthermore, elemental mapping analysis based on energy-dispersive X-Ray spectroscopy (EDS) exhibits a rather uniform distribution of Ce (red) and Sn (greed) across the sample, suggesting homogeneous doping of Sn into the CeO₂ nanorods (Figure 2c–d).

The crystalline structures of the composites were then characterized by X-ray diffraction (XRD) measurements. As

shown in Figure 3a and Figure-S2, Sn-CeO₂-10% nanorods exhibit four diffraction peaks at $2\theta = 28.5^{\circ}$, 33.1° , 47.5° and 56.4°, which are ascribed to the (111), (200), (220) and (311) crystalline planes of CeO₂ (JSPDS Card# 43-1002), respectively, in good agreement with the HRTEM results (Figure 2). Similar behaviors were observed with other samples in the series. On the basis of the series of high-resolution TEM images taken at different locations of the Sn-CeO₂ nanorods (Figure 2) and the corresponding XRD profile depicted in Figure 3a, CeO₂ is the only crystalline species that can be resolved in the sample, due to a low Sn content.

The elemental composition and valence state of Sn-CeO₂ was then examined by X-ray photoelectron spectroscopy (XPS) measurements.^[17] From the high-resolution XPS spectra in Figure 3b and S3, one can see that all the samples exhibited a well-defined Sn 3d doublet at 496.2 and 487.7 eV, due to the $3d_{3/2}$ and $3d_{5/2}$ electrons of Sn (IV) in SnO₂, respectively, while the doublet at 485.2 and 493.6 eV to Sn (0)/Sn(II) $3d_{3/2}$ and $3d_{1/2}$ (low-valence states Sn may arise from thermal reduction under a 10% H₂/Ar atmosphere).^[18] In Figure 3c and S4, two core-level signals of the Ce element were observed for all Sn-CeO₂ samples at ca. 900 and 885 eV, corresponding to the Ce $3d_{3/2}$ and $3d_{5/2}$ electrons, respectively.^[19] Deconvolution yields five

Figure 2. (a) TEM image of CeO₂ nanorods. (b) HRTEM and (c, d) EDS elemental maps of Sn-CeO₂-10% nanorods: Ce (red) and Sn (greed).

Figure 3. (a) XRD patterns of CeO₂, SnO₂, Sn-CeO₂-10%. (b, c) XPS scans of the (b) Sn 3d and (c) Ce 3d electrons in Sn-CeO₂-10%. Black curves are experimental data and color-shaded peaks are deconvolution fits.

doublets. The pairs of 880.6/898.9 eV and 885.3/903.9 eV most likely arose from Ce³⁺, indicating the formation of oxygen vacancies on the CeO₂ surface, while those at 882.4/910.0, 888.8/907.3, and 898.2/916.7 eV might be ascribed to Ce⁴⁺.^[19] Based on the integrated peak areas, the molar ratio of Ce³⁺/ (Ce⁴⁺ + Ce³⁺) on the sample surface was calculated and listed in Table S1. One can clearly see that the Ce³⁺ content is positively correlated with vacancies. When the ratio of Ce³⁺/(Ce⁴⁺ + Ce³⁺) increases and the vacancies increase. On the contrary, the vacancies decrease. When the Sn content is 10%, compared with other catalysts, the value is the lowest 0.182, which indicates that the Sn content doped into CeO₂ vacancies may be the largest. And, with the further increase of Sn content, the ratio of Ce³⁺/(Ce⁴⁺ + Ce³⁺) increases, which may be caused by excessive Sn agglomeration.

The charge distributions of CeO₂ and Sn-CeO₂ are shown in Figure S5, where one can see that oxygen vacancies (Vo) are formed around the Sn dopants. This leads to an increase of the Ce valence state compared with the CeO₂, consistent with the XPS results (Figure 3). Note that the formation of Vo facilitated the adsorption of CO₂ molecules, and in conjunction with the adjacent Sn atoms, improved the catalytic activity of CO₂ reduction.^[7b] Based on the XPS results, the molar ratio is estimated to be 1:6.3 for Sn^{4+}/Sn^{2+} , and 1:3.5 for Ce^{3+}/Ce^{4+} in Sn-CeO₂-10% (Table 1). When the Sn content exceeds 10%, with an increasing total loading of Sn, the content of lowvalence Sn increases accordingly, and inclusions are formed on the CeO₂ surface to applomerate to reduce the active sites, which leads to a reduced catalytic activity. In addition, one can clearly see that the decrease of Ce³⁺ and Ce⁴⁺ ratio (from Sn-CeO₂-1% to Sn-CeO₂-10%) can be correlated to the decrease of surface oxygen vacancy concentrations.^[20] Meanwhile, an increase of the Sn²⁺ doping level (from Sn-CeO₂-1% to Sn-CeO₂-10%) will lead to a decrease of the Ce³⁺/(Ce⁴⁺ + Ce³⁺, Table S1) ratio, as compared to the undoped CeO_2 , consistent with the XPS results and theoretical calculation with a low Sn content.

Significantly, the Sn-CeO₂ nanorods exhibited apparent electrocatalytic activity towards CO₂RR, as evaluated in an H-cell filled with CO₂-saturated 0.1 MNaHCO₃ solution. Liner sweep voltammetry (LSV) was used to provide an initial, qualitative assessment of the electrocatalytic performance of Sn-CeO₂-10%, undoped CeO₂ and SnO₂, where a sudden increase of voltametric currents was observed in the positive potential sweep from 0 to -1.40 V vs. RHE (Figure 4a), suggesting an apparent CO₂RR catalytic activity. In addition, one can see that the voltametric current density decreases in the order of Sn-CeO₂-10% > SnO₂ > CeO₂ within the potential range. The CO₂RR gas products of CO and H₂ were examined by online gas chromatography (GC), and liquid products were detected by proton nuclear magnetic resonance (NMR) measurements.

The catalyst selectivity was further investigated by electrolysis in a CO₂-saturated 0.1 M NaHCO₃ electrolyte. The FE of the products is summarized in Figure 4b-4d and S6. One can see that within the potential range of -0.70 to -1.20 V, CeO₂ mainly catalyzed HER (Figure 4b), with only a trace amount of CO and HCOO⁻ produced. SnO₂ performed somewhat better towards CO₂RR (Figure 4c), producing a higher selectivity of $\mathsf{HCOO}^{\scriptscriptstyle-}.$ The best $\mathsf{CO}_2\mathsf{RR}$ performance was observed with the Sn-CeO₂-10% catalyst (Figure 4d), where electrolysis primarily produced formate, with CO and H₂ being the minor products, and formate production was enhanced at increasingly negative potentials. In fact, the FE of formate was found to increase from 18.80% at -0.70 V to 81.10% at -1.10 V and then decrease slightly to 65% at -1.20 V, markedly better than those of other Sn-CeO₂ samples in the series (Figure S6). For comparison, the FE of formate at -1.10 V was 60% on the SnO₂ electrode (Figure 4c), only 6% for CeO₂ (Figure 4b). That is, Sn-CeO₂-10%

Table 1. Molar ratio of Sn^{4+}/Sn^{2+} and Ce^{3+}/Ce^{4+} of the Sn-CeO ₂ samples.							
	Sn-CeO ₂ -1%	Sn-CeO ₂ -5%	Sn-CeO ₂ -10%	Sn-CeO ₂ -15%	Sn-CeO ₂ -20%		
Sn^{4+}/Sn^{2+} Ce ³⁺ /Ce ⁴⁺	1:7 1:2.5	1:6.5 1:3.2	1:6.3 1:3.5	1:6.6 1:2.9	1:6.8 1:2.7		

Figure 4. CO_2RR activity of $Sn-CeO_2-10\%$, CeO_2 , and SnO_2 . (a) LSV curves in CO_2 -saturated 0.1 M NaHCO₃ electrolyte. FE plots of (b) CeO_2 , and (c) SnO_2 , (d) $Sn-CeO_2-10\%$ at various potentials. (e) Comparison between total current density and formate partial current density. (f) FE comparison of $Sn-CeO_2-x\%$, CeO_2 and SnO_2 .

stood out as the best formate production catalyst within the present experimental context.

The total current density (J_{total}) and formate partial current density (J_{hcooh}) of the CeO₂, Sn-CeO₂-10% and SnO₂ are summarized in Figure 4e. Among the three catalysts, Sn-CeO2-10% demonstrated the highest J_{hcooh} in agreement with the LSV results (Figure 3a). The enhanced J_{total} can be mainly attributed to the increased amount of Sn²⁺ in the Sn-CeO₂-10% sample, as well as the distinct nature of the catalytic centers. Since J_{total} included the current from HER, J_{hcooh} provided a more accurate account of the CO_2 -to-HCOO⁻ performance. From Figure 4e and S7, one can see that CeO_2 exhibited a J_{hcooh} of only ca. 0.1 mA cm $^{-2}_{geo}$ at -1.10 V, SnO₂ was somewhat better at $J_{hcooh} = 5.50 \text{ mA cm}^{-2}_{geo}$, and Sn-CeO₂-10% was the highest at ca. 9.13 mA cm⁻²_{qeo}, indicating a significant improvement for the intrinsic activity (Figure 4f and S6). This may be ascribed to a higher concentration of Sn active sites in Sn-CeO₂-10% than in other samples, as suggested in XPS measurements (Table 1). Note that Sn aggregation started to occur at high Sn loadings (e.g., Sn-CeO₂-20%), which diminished the number of Sn active sites. In fact, one can see that the double-layer capacitance (Figure S8) of Sn-CeO₂-10% was the highest among the sample series, suggesting a largest electrochemical surface area and ready accessibility of CO₂ to the catalytic active sites. The Sn-CeO₂-10% also exhibited excellent stability (Figure S10). Notably, the current density slightly increases due to the accumulated HCOO⁻ in the aqueous electrolytic media and the gradual activation of carbon black in the catalyst ink in continuous electrolysis for 23 h.^[21] In addition, by comparison with the TEM and XRD of the Sn-CeO₂-10% catalyst before and after CO₂RR (Figures S11-12), no obvious change in the integral structure and morphology, indicating high stability of $Sn-CeO_2-10\%$ catalyst during the CO_2RR process.

Sn-doping into CeO₂ lattice could produce oxygen vacancy (V_0) and the synergistic effect of Sn and V_0 on the electronic structure o CeO₂ may promote CO₂RR to formate.^[7b,22,23] The generation of the first oxygen vacancy (V₀) is spontaneous^[24] when a pair of $Ce^{4+}-O^{2-}$ on the $CeO_2(111)$ surface was replaced by a pair of $Sn^{2+}-V_0$. It was found that the formation energy of the first V_0 on the Sn-doped CeO₂(111) surface is lower than two and three oxygen vacancies, as shown in Table S1. As shown in Figure S13a, the HOMO of CeO₂ is mainly composed of the O 2p orbital, and LUMO of the Ce 4f orbital, with a HOMO- LUMO gap of about 2 eV. For Sn-CeO₂, the CeO₂(111) surface was doped with Sn to form a Vo. As shown in Figure S13b, the electrons tend to be located on the Ce 4f orbital occupying the bandgap state, causing the down-shift of the energy level and decrease the bandgap, as compared to undoped CeO₂(111). Figure S9 shows the Nyquist plots of Sndoping CeO₂ catalysts, which revealed that Sn-CeO₂-10% displayed a lower interfacial charge-transfer resistance (Rct) than other catalysts. The 4-probe method was applied to the electrical conductivity test, and it was found that the electrical conductivity of Sn-CeO₂-10% was significantly higher than that of other catalysts (Table S3). These results indicate that Sndoped CeO₂ could facilitate electron transfer and also the electrochemical performance of CO₂RR.

Based on the experimental results, two main reaction pathways were considered in the computational analysis. As CO and $\rm HCOO^-$ production involves two-electron and two proton transfers,^[25] CO and $\rm HCOO^-$ are formed by the adsorption of

Chemistry Europe

uropean Chemical locieties Publishing

reaction intermediates COOH* and HCOO* on the electrode surface.^[18,26] The reaction mechanism is summarized below.

Formic acid mechanism^[25b,27]

$$CO_2(g) + e^- + H^+ + * \rightarrow HCOO^*$$
(1-1)

 $HCOO^* + e^- + H^+ \rightarrow HCOOH^*$ (1-2)

 $\mathsf{HCOOH}^* \to \mathsf{HCOOH}(\mathsf{aq}) + *$ (1-3)

Carbon monoxide mechanism^[27-28]

 $CO_2(g) + e^- + H^+ + * \rightarrow COOH^*$ (2-1)

 $COOH^* + e^- + H^+ \to CO^* + H_2O$ (2-2)

$$CO^* \rightarrow CO (g) + *$$
 (2-3)

where * represents a surface adsorption site.

To understand the optimized catalytic performance of CO_2RR on Sn-doped CeO_2 , the energetics of CO_2RR intermediates to CO and formate were calculated on Sn-CeO₂, CeO₂ and SnO₂ by DFT calculations based on the optimized configurations in Figure S14-16. Note that in CO_2RR , the Tafel slope is a good parameter to the kinetics of the reaction.^[29] From Figure S8i, one can see that the measured Tafel slopes plot also reveal that the Tafel slope for formate production on Sn-CeO₂-10% catalyst presents the minimum value. In the CO_2RR process, COOH* and HCOO* are both key intermediates for the formation of HCOOH. From Figure 5a–c, one can see that the formation of HCOO* is a spontaneous exothermic process on Sn-CeO₂, CeO₂ and SnO₂, while the formation of *COOH is endothermic in nature. Also, the energy barrier (ΔG) from HCOO* to HCOOH is observed on

Sn-CeO₂(0.34 eV), CeO₂ (0.62 eV) and SnO₂ (0.46 eV), indicating the presence of Vo and doped-Sn favor the formation of HCOOH. Thus, the enhanced activity and selectivity of formate production on Sn-CeO₂(111) ca be attributed to the balanced electrochemical processes between the formation of HCOO* intermediate and the desorption of HCOOH.

Furthermore, according to Mulliken's analysis, there was a charge transfer of 0.13e from Ce to Sn, leading to a change of the electronic structure, consistent with the XPS results. As shown in Figure 5d, the Gibbs free energy of hydrogen (ΔG_{H}) on Sn-CeO₂, SnO₂ and CeO₂ were calculated to be 1.29, -0.70 and 1.41 eV, respectively. The ΔG_{H} on CeO₂ is positive, indicating that both HER and formate production are relatively not favored. While ΔG_H on SnO₂ is negative and the adsorption of H on the catalyst is too strong, then the adsorption of H would be competitive to CO₂ and CO₂R might be not favored. Meanwhile, the surface of CeO₂ can accelerate the dissociation of water and increase the coverage of H. Experimentally, we observed that formate production is further promoted on Sn-CeO₂, thus, meaning that the enhanced adsorption of H on Sn-CeO₂ is not strong enough to compete with CO₂ adsorption, but promote the formate formation. These results indicated that HER is suppressed on Sn-CeO₂ which allowed protons to be readily available for formate production, in good agreement with the H_2 FE depicted in Figure 3.

3. Conclusions

In summary, Sn-doped CeO_2 nanorods were prepared via a facile hydrothermal procedure, followed by thermal annealing in Ar/H₂, and exhibited a high performance in selective CO_2 reduction to formate in 0.1 M NaHCO₃ solution. This was

Figure 5. Figure 5. (a) Calculated Free energy diagrams of key CO₂RR intermediates: CO (purple) and HCOOH (cyan) produced on (a) Sn-CeO₂, (b) CeO₂(111), and (c) SnO₂(110). (d) Calculated free-energy diagram of HER on CeO₂ (111), SnO₂(110) and Sn-CeO₂.

attributed to the tuning of surface electronic structures by the synergetic contributions of Sn active sites and oxygen vacancies of CeO₂. Among the series of samples, Sn-CeO₂-10% stood out as the best catalyst, with an FE of 81.10% for formate production and a geometric current density 2.9 times that of CeO₂ at -1.10 V vs. RHE. Theoretical calculations show that the high selectivity was attributed to the Sn doping in ceria that facilitated CO₂ adsorption and decreased the energy barrier to form HCOOH. Results from this study show that deliberate metal doping of CeO₂ can be exploited as an effective strategy in the rational design and engineering of high-performance, low-cost CO₂RR catalysts.

Supplementary Information

Some electrochemical performances, Figure S1–13, Table S1–S2.

Author Information

The authors declare no competing financial interest.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U2032151 and 21773224), National Key R&D Program of China (No. 2018YFB1502600) and the Fundamental Research Funds for Central Universities (SCUT Grant No. 2019ZD22) and Development Program of Guangdong Province (No. 2019B110209002).

Conflict of Interest

The authors declare no conflict of interest.

Keywords: electrochemical CO_2 reduction \cdot Sn-doped $CeO_2 \cdot$ oxygen vacancy \cdot density functional calculations

- a) C. Song, *Catal. Today.* **2006**, *115*, 2–32; b) X. Lu, D. Jin, S. Wei, Z. Wang, C. An, W. Guo, *J. Mater. Chem. A.* **2015**, *3*, 12118–12132; c) E. A. Quadrelli, G. Centi, J.-L. Duplan, S. Perathoner, *ChemSusChem.* **2011**, *4*, 1194–1215.
- [2] a) K.-P. Yu, W.-Y. Yu, M.-C. Kuo, Y.-C. Liou, S.-H. Chien, *Appl. Catal. B* 2008, *84*, 112–118; b) F.-W. Chang, M.-S. Kuo, M.-T. Tsay, M.-C. Hsieh, *Appl. Catal. A* 2003, *247*, 309–320; c) M. Cai, J. Wen, W. Chu, X. Cheng, Z. Li, J. Nat. Gas Chem. 2011, *20*, 318–324; d) I. Omae, *Catal. Today.* 2006, *115*, 33–52; e) D. Li, N. Ichikuni, S. Shimazu, T. Uematsu, *Appl. Catal. A* 1999, *180*, 227–235; f) M. Fujiwara, R. Kieffer, H. Ando, Y. Souma, *Appl. Catal. A* 1995, *121*, 113–124.
- [3] a) D. R. Kauffman, J. Thakkar, R. Siva, C. Matranga, P. R. Ohodnicki, C. Zeng, R. Jin, ACS Appl. Mater. Interfaces. 2015, 7, 15626–15632; b) J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631–675; c) N. S. Spinner, J. A. Vega, W. E. Mustain, Catal. Sci. Technol. 2012, 2, 19–28.

- [4] a) D. H. Won, H. Shin, J. Koh, J. Chung, H. S. Lee, H. Kim, S. I. Woo, Angew. Chem. Int. Ed. 2016, 55, 9297–9300; Angew. Chem. 2016, 128, 9443–9446; b) D. Raciti, K. J. Livi, C. Wang, Nano Lett. 2015, 15, 6829– 6835.
- [5] a) C. Guan, D.-D. Zhang, Y. Pan, M. Iguchi, M. J. Ajitha, J. Hu, H. Li, C. Yao, M.-H. Huang, S. Min, J. Zheng, Y. Himeda, H. Kawanami, K.-W. Huang, *Inorg. Chem.* **2017**, *56*, 438–445; b) J.-M. Yan, S.-J. Li, S.-S. Yi, B.-R. Wulan, W.-T. Zheng, Q. Jiang, *Adv. Mater.* **2018**, *30*, 1703038.
- [6] B. G. Abraham, K. K. Maniam, A. Kuniyil, R. Chetty, Fuel Cells. 2016, 16, 656–661.
- [7] a) D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G. Wang, X. Bao, *J. Am. Chem. Soc.* 2017, *139*, 5652–5655;
 b) Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu, G. Zheng, *ACS Catal.* 2018, *8*, 7113–7119; c) T.-W. Jiang, Y.-W. Zhou, X.-Y. Ma, X. Qin, H. Li, C. Ding, B. Jiang, K. Jiang, W.-B. Cai, *ACS Catal.* 2021, *11*, 840–848; d) J. Wang, J. Zou, X. Hu, S. Ning, X. Wang, X. Kang, S. Chen, *J. Mater. Chem. A* 2019, *7*, 27514–27521.
- [8] R. J. Gorte, AIChE J. 2010, 56, 1126-1135.
- [9] W. Song, Y. Su, E. J. M. Hensen, J. Phys. Chem. C 2015, 119, 27505– 27511.
- [10] Y. Zhao, B. Teng, Z. Yang, Y. Zhao, L. Zhao, M. Luo, J. Phys. Chem. C 2011, 115, 16461–16466.
- [11] B. Jiang, X.-G. Zhang, K. Jiang, D.-Y. Wu, W.-B. Cai, J. Am. Chem. Soc. 2018, 140, 2880–2889.
- [12] a) F. Li, L. Chen, G. P. Knowles, D. R. MacFarlane, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 505–509; Angew. Chem. 2017, 129, 520–524; b) E. Irtem, T. Andreu, A. Parra, M. D. Hernández-Alonso, S. García-Rodríguez, J. M. Riesco-García, G. Penelas-Pérez, J. R. Morante, J. Mater. Chem. A. 2016, 4, 13582–13588; c) Y. Zhao, J. Liang, C. Wang, J. Ma, G. G. Wallace, Adv. Energy Mater. 2018, 8, 1702524.
- [13] a) N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, *Nat. Commun.* 2018, 9, 1320; b) Y. Zhang, F. Li, X. Zhang, T. Williams, C. D. Easton, A. M. Bond, J. Zhang, *J. Mater. Chem. A.* 2018, 6, 4714–4720.
- [14] Z. B. Hoffman, T. S. Gray, K. B. Moraveck, T. B. Gunnoe, G. Zangari, ACS Catal. 2017, 7, 5381–5390.
- [15] A. Vasileff, C. Xu, L. Ge, Y. Zheng, S.-Z. Qiao, Chem. Commun. 2018, 54, 13965–13968.
- [16] a) M. F. Baruch, J. E. Pander, J. L. White, A. B. Bocarsly, ACS Catal. 2015, 5, 3148–3156; b) A. Dutta, A. Kuzume, M. Rahaman, S. Vesztergom, P. Broekmann, ACS Catal. 2015, 5, 7498–7502.
- [17] M. Romeo, K. Bak, J. El Fallah, F. Le Normand, L. Hilaire, Surf. Interface Anal. 1993, 20, 508–512.
- [18] Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, J.-j. Zhu, S. Sun, J. Am. Chem. Soc. 2017, 139, 4290–4293.
- [19] H. Dong, L. Zhang, L. Li, W. Deng, C. Hu, Z.-J. Zhao, J. Gong, Small. 2019, 15, 1900289.
- [20] J. Han, J. Meeprasert, P. Maitarad, S. Nammuangruk, L. Shi, D. Zhang, J. Phys. Chem. C 2016, 120, 1523–1533.
- [21] S. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang, X. W. Lou, Angew. Chem. Int. Ed. 2019, 58, 8499–8503; Angew. Chem. 2019, 131, 8587–8591.
- [22] C. Guo, S. Wei, S. Zhou, T. Zhang, Z. Wang, S.-P. Ng, X. Lu, C.-M. L. Wu, W. Guo, ACS Appl. Mater. Interfaces. 2017, 9, 26107–26117.
- [23] N. V. Skorodumova, M. Baudin, K. Hermansson, Phys. Rev. B. 2004, 69, 075401.
- [24] J. Paier, C. Penschke, J. Sauer, Chem. Rev. 2013, 113, 3949-3985.
- [25] a) A. Klinkova, P. De Luna, C.-T. Dinh, O. Voznyy, E. M. Larin, E. Kumacheva, E. H. Sargent, ACS Catal. 2016, 6, 8115–8120; b) J. S. Yoo, R. Christensen, T. Vegge, J. K. Nørskov, F. Studt, ChemSusChem. 2016, 9, 358–363; c) M. Dunwell, Y. Yan, B. Xu, ACS Catal. 2017, 7, 5410–5419.
- [26] a) J. Wu, R. M. Yadav, M. Liu, P. P. Sharma, C. S. Tiwary, L. Ma, X. Zou, X.-D. Zhou, B. I. Yakobson, J. Lou, P. M. Ajayan, ACS Nano. 2015, 9, 5364– 5371; b) V.-A. Glezakou, L. X. Dang, B. P. McGrail, J. Phys. Chem. C 2009, 113, 3691–3696.
- [27] S. Sen, D. Liu, G. T. R. Palmore, ACS Catal. 2014, 4, 3091–3095.
- [28] H. Huang, H. Jia, Z. Liu, P. Gao, J. Zhao, Z. Luo, J. Yang, J. Zeng, Angew. Chem. Int. Ed. 2017, 56, 3594–3598; Angew. Chem. 2017, 129, 3648– 3652.
- [29] M. Dunwell, W. Luc, Y. Yan, F. Jiao, B. Xu, ACS Catal. 2018, 8, 8121–8129.

Manuscript received: April 2, 2021

Revised manuscript received: June 5, 2021

Accepted manuscript online: June 28, 2021