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carbon fiber@vanadium nitride nanoparticles as
supercapacitor electrodes†
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In this study, a hybrid electrode material for supercapacitors based on hierarchical porous carbon fiber@

vanadium nitride nanoparticles is fabricated using the method of phase-separation mediated by the PAA-

b-PAN-b-PAA tri-block copolymer. In the phase-separation procedure, the ionic block copolymer self-

assembled on the surface of carbon nanofibers, and is used to adsorb NH4VO3. Thermal treatment at

controlled temperatures under an NH3 : N2 atmosphere led to the formation of vanadium nitride nano-

particles that are distributed uniformly on the nanofiber surface. By changing the PAN to PAA-b-PAN-b-

PAA ratio in the casting solution, a maximum specific capacitance of 240.5 F g−1 is achieved at the current

density of 0.5 A g−1 with good rate capability at a capacitance retention of 72.1% at 5.0 A g−1 in an

aqueous electrolyte of 6 mol L−1 KOH within the potential range of −1.10 to 0 V (rN/A = 1.5/1.0).

Moreover, an asymmetric supercapacitor is assembled by using the hierarchical porous carbon fiber@

vanadium nitride as the negative electrode and Ni(OH)2 as the positive electrode. Remarkably, at the power

density of 400 W kg−1, the supercapacitor device delivers a better energy density of 39.3 W h kg−1. It also

shows excellent electrochemical stability, and thus might be used as a promising energy-storage device.

1. Introduction

Energy storage technologies are vital for efficient utilization of
energy. Among the energy storage devices, supercapacitors
show practical applications and have been attracting much
attention, owing to their high power density, good cycling
stability, fast charging–discharging capability, and safe
operation.1–6 Much progress has been made to overcome the
major barriers of low energy density without sacrificing the
power density or cycle life.7–14 According to E = 0.5CV2 (E is the
energy density, C is the capacitance, and V is the operating
voltage window), enhancing C and widening V can be
employed to increase the energy density of super-
capacitors.15,16 The original polymer-based and bio-based
carbon materials (unmodified by functional groups such as

nitrogen- and oxygen-containing) usually suffer from lower
level specific capacitances, where the capacitance comes from
the charge separation at an electrode/electrolyte
interface.3,17–21 Hence, a number of studies have been focused
on metal oxides and conducting polymers because of their
high pseudocapacitance through fast reversible redox
reactions.22–25 But they are usually used as positive electrode
materials. Transition metal nitrides have been widely investi-
gated for supercapacitors, such as VN,26–30 WN,31 TiN,32,33

MoxN,
34,35 and so on, as important negative electrode

materials, owing to their superb electrical conductivity
(4000–55 500 S cm−1), high capacitance (>200 F g−1), and wide
operating potential window (0.8–3 V). Among them, vanadium
nitride (VN) has attracted considerable attention. In fact, a
variety of VN nanostructures have been constructed as super-
capacitive negative electrodes, such as nanoparticles, nano-
fibers, and nanotubes.15,36–38

The performance may be enhanced by the deposition of VN
nanostructures on a porous carbon substrate. Polyacrylnitrile
(PAN) is a typical hydrocarbon for the synthesis of carbon-
aceous materials,39–41 where the –CN functional group may
enable in situ nitrogen doping during the carbonization
process.42 Electrospinning is a useful method to shape PAN
into high-surface-area one-dimensional (1D) nanofibers.43,44

With in situ N doping, PAN nanofibers have been used as a
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substrate for loading active catalytic nanoparticles, including
Ag, Au, and Pd.45 Until now, the main synthetic method for
preparing VN/carbon composite materials has been the chemi-
cal deposition of transition-metal oxides or nitrides onto
porous carbon materials.46–48 However, the loading of
vanadium is limited by the subsurface area and compatibility
of the base. Therefore, it is necessary to develop effective
loading methods, which can not only lead to an accurate
loading of the vanadium-based groups but also prevent aggre-
gation of the VN nanoparticles.

Herein, we report a facile strategy for the preparation of
hierarchical porous carbon fiber@vanadium nitride nano-
particles (HPCF@VNNP) by pyrolysis of triblock copolymer
blended polymer nanofibers loaded with vanadium pre-
cursors. In comparison with the previous preparation of VN/
C-based electrode materials, this method offers several distinct
benefits: (i) through the self-assembly of ionic and amphi-
philic block copolymers on the nanofiber surface, the active
materials can be loaded uniformly on the carbon surface,
which helps enhance the usage efficiency of the active
material; (ii) by varying the amount of the block copolymer,
the content of the active materials can be accurately controlled;
and (iii) high carbon content with considerable N-doping in
the composite material enhances the electronic conductivity
and contact wettability. Consequently, based on the advanced
structure architecture, the fabricated HPCF@VNNP exhibits
good electrochemical performance, such as good specific
capacitance and energy density, and long stability.

2. Experimental
2.1 Chemicals

Vinylcyanide (AN) and acrylic acid (AA) from Sinopharm
Chemical Reagents Co. Ltd were purified by distillation prior
to use. Azobisisobutryonitrile (AIBN) was purchased from
Tianjin Tianhe Chemical Reagent Factory (Tianjin, China) and
used as received. Ammonium metavanadate (NH4VO3, analyti-
cal reagent), ethyl ether, and N,N-dimethylformamide (DMF)
were purchased from Sinopharm Chemical Reagents Co. Ltd,
and used as received without any further purification. A RAFT
agent was synthesized according to the literature.49

2.2 Preparation of the polyacrylonitrile (PAN) precursor

PAN was synthesized by solution polymerization according to
the previous work.50,51 Typically, AN (19.2 g), and AIBN
(0.056 g) were dissolved in 60 mL of DMF under magnetic stir-
ring at 70 °C for 6 h. After the reaction, the sample was precipi-
tated with ethanol. And the resulting precipitate was washed
thoroughly with distilled water several times. Finally the
product was dried under vacuum at 40 °C for 24 h.

2.3 Synthesis of PAA-b-PAN-b-PAA

Synthesis of the macro-RAFT agent of –PAA: AA, RAFT agent,
AIBN, and DMF were added into a tube. After bubbling for
30 min with nitrogen, the reaction mixture was allowed to

warm under a nitrogen atmosphere to 75 °C, and the polymer-
ization lasted for 4 h. After precipitation in ethyl ether, the
product was dried under vacuum at 60 °C overnight.

Synthesis of the PAA-b-PAN-b-PAA triblock copolymer: AN,
the macro-RAFT agent (–PAA), AIBN, and DMF were added to a
tube, and stirred for 10 min. After bubbling with nitrogen for
30 min, the reaction mixture was allowed to warm to 75 °C
under a nitrogen atmosphere and polymerization was carried
out for 12 h. After precipitation in ethyl ether, the product was
dried under vacuum at 60 °C overnight.

2.4 Preparation of triblock copolymer blended polymer
nanofibers

Triblock copolymer blended polymer nanofibers were prepared
by the electrospinning technique. Typically, PAN (1.5 g) and
PAA-b-PAN-b-PAA (0.1–1.5 g) were added into DMF, which was
heated at 60 °C for 3 h to obtain a homogeneous solution. The
electrospinning solution was put into a 20 mL plastic syringe
connected to a transparent flexible polyethylene pipe closely
with a stainless steel needle, which was fixed perpendicular to
the water surface. A positive potential of 23.0–24.0 kV was
applied between the needle tip and water surface at a distance
of 10.0 cm. The flow rate of the electrospinning solution was
0.6 mL h−1.

2.5 Adsorption of vanadium-based groups

A NH4VO3 solution was prepared at a concentration of
0.12 mol L−1 in distilled water at 60 °C. Polymer nanofibers
were then added into the solution, and soaked at 60 °C for
24 h under magnetic stirring. After that, the samples were
dried at 60 °C under an air flow for 24 h and further used as
precursors.

2.6 Preparation of hierarchical porous carbon
fiber@vanadium nitride nanoparticles (HPCF@VNNP)

The precursors were pre-heated under an air flow at 270 °C for
1 h to achieve pre-oxidation, and then heated under a mixed
atmosphere of NH3 : N2 = 3 : 2 at 800 °C for 1 h in a tubular
furnace. The heating rate was controlled at 5 °C min−1.

2.7 Structure characterization

The microstructure of the as-prepared materials was character-
ized by FTIR measurements with a Nicolet Nexus 670 FTIR
instrument and a transmission electron microscope (TEM,
JEOL JEM-2010). X-ray photoelectron spectroscopy (XPS)
measurements were carried out with a Physical Electronics
instrument, and X-ray diffraction (XRD) patterns were acquired
with a Rigaku D/MAX 2400 diffractometer (Cu Kα radiation λ =
1.5418 Å, operated at 40 kV and 60 mA). Energy dispersive
X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA),
and differential scanning calorimetry (DSC) were carried out to
estimate the amount of each ingredient in the sample. The
surface morphology of the samples was examined with a field
emission scanning electron microscope (SEM, JEOL
JSM-6700F).
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2.8 Electrochemical measurements

A typical three-electrode system was used to evaluate the
electrochemical performance of the sample. All electro-
chemical measurements were carried out using a CHI660
electrochemical analyzer with a platinum foil as the counter
electrode. A saturated calomel (SCE) and Ni foam of 1 cm2 in
area were used as the reference electrode and the current col-
lector, respectively. Typically, for a three-electrode system, the
working electrode was prepared by coating the active material
(80.0 wt%, 4.0 mg), acetylene black (7.5 wt%, 0.4 mg),
polytetrafluoroethylene (5.0 wt%, 0.25 mg), and conducting
graphite (7.5 wt%, 0.4 mg) onto a current-collector. After
drying in a vacuum oven at 60 °C for 8 h, the nickel foam that
was coated with active materials was pressed at a pressure of
10.0 MPa for 30 s in order to enhance the adhesion between
the active materials and the current collector. The electro-
chemical tests including cyclic voltammetry (CV), galvanostatic
charge discharge (GCD), and electrochemical impedance spec-
troscopy (EIS) were carried out using an electrochemical work-
station. The CV curves were obtained at varying sweep rates
from 5.0 to 50.0 mV s−1, and GCD tests were conducted at
various current densities from 0.5 to 5.0 A g−1 in the potential
window range of −1.1 to 0 V. For the EIS measurement, the fre-
quency varied from 0.01–105 Hz and data were acquired at the
open circuit voltage with the alternate current amplitude of
10.0 mV. The cycling test was performed using a LAND
CT2001A instrument at a current density of 2.0 A g−1.

Calculations: The specific capacitance of the electrode can
be calculated from the discharging curves at different current
densities by the equation:

C ¼ It=ðΔVmÞ Cm ¼ It=m ð1Þ
where C (F g−1) is the specific capacitance and Cm (C g−1) is
the specific charge, I (A) is the discharge current, t (s) is the
discharge time, ΔV (V) is the potential drop during the dis-
charge process and m (g) is the mass of active materials.

The energy and power density of the device are calculated
from the discharge curves at different current densities using
the following equations:

E ¼ CV 2=7:2 ð2Þ
P ¼ 3600E=ðΔtÞ ð3Þ

where E (W h kg−1) is the energy density of the device, C (F g−1)
is the specific capacitance, V (V) is the potential drop during the
discharge process, P (W kg−1) is the power density of the device,
and Δt (s) is the discharge time.

3. Results and discussion

The detailed fabrication process of the hierarchical porous
carbon fiber@vanadium nitride nanoparticles (HPCF@VNNP)
is illustrated in Scheme 1. It includes four main steps: prepa-
ration of triblock copolymer blended polymer nanofibers,
adsorption of vanadium-based groups, preoxidization and heat

treatment. The detailed procedure is described in the
Experimental section, starting with an ionic amphiphilic tri-
block copolymer of polyacrylic acid-b-polyacrylonitrile-b-poly-
acrylic (PAA-b-PAN-b-PAA), which was synthesized by reversible
addition–fragmentation chain-transfer (RAFT) polymerization.
Characterization data of PAA-b-PAN-b-PAA by FTIR and 1H
NMR technologies are included in Fig. S1 in the ESI.† Casting
solutions involving PAN, PAA-b-PAN-b-PAA, and solvents were
prepared and transferred into a syringe, which were used to
fabricate triblock copolymer blended polymer nanofibers by
electrospinning technology. The nanofibers were obtained in a
water bath, where the phase separation occurred. During the
phase-separation, the solvent exchange and the migration of
the block copolymer with solvent movement generated a hier-
archical porous structure. Meanwhile, with fast solvent
exchange of DMF and water, PAA-b-PAN-b-PAA migrated to the
nanofiber surface, where –PAA blocks were exposed on the
surface and –PAN blocks incorporated in the interior. The
hydrophobic property of the –PAN block helped in minimizing
the loss of PAA-b-PAN-b-PAA during the preparation procedure,
while the ionic and hydrophilic property of the –PAA block was
exploited for the loading of NH4VO3 on the nanofiber surface
and in the hierarchical pores. After that, the materials were
subject to a pre-heated process under an air flow at 270 °C for
1 h, and then in a mixed atmosphere of N2 and NH3 at 800 °C
for 1 h, leading to the formation of HPCF@VNNP. The
polymer nanofibers would remain and generate hierarchical
porous carbon nanofibers, while NH4VO3 adsorbed on the
fiber surface was transformed to VN nanoparticles.

Fig. 1 shows the SEM and TEM images of HPCF and
HPCF@VNNP, both of which showed nanofibers with a
uniform shape and a similar diameter in the range of 40 to
80 nm. SEM images of HPCF showed that HPCF had a smooth
surface with a slightly curved shape that might result from the
semicrystalline nature of the PAN precursor, as the swollen
PAN domains partially crystallized and formed crosslinked
structures during subsequent thermal stabilization52 (Fig. 1a
and b). In comparison, from Fig. 1c and d, one can see that
the HPCF@VNNP sample maintained the fibrous morphology

Scheme 1 Schematic illustration of the synthesis process for
HPCF@VNNP.
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diameter in the range of 70 to 90 nm with a somewhat rough
surface caused by the loading of VN nanoparticles.
Furthermore, from the TEM image of HPCF@VNNP, VN nano-
particles were obviously observed on the surface throughout
all of the fibrous network (Fig. 1e). The VN nanoparticles were
about 10 nm and showed no apparent aggregation due to the
use of ionic block copolymers of PAA-b-PAN-b-PAA to carry the
vanadium precursor before heat treatment.

As shown in Fig. 2, TEM, selected-area electron diffraction,
EDS, and elemental mapping analyses were carried out to
further study the microstructure of HPCF and HPCF@VNNP
nanofibers. HPCF showed a diameter of 80 nm and revealed
the presence of some mesopores and micropores with several
nanometers in size, which might arise from solvent exchange
during phase-separation and the electrospinning process
(Fig. 2a and b, Fig. S2†). Furthermore, there were a number of
VN nanoparticles scattered across the surface and inside the
fibers (Fig. 2d). Because of the deposition of VN nanoparticles
on the carbon surface, HPCF@VNNP showed a larger diameter
of about 100 nm. SAED measurements showed very low crystal-
linity of HPCF, and good crystallinity of HPCF@VNNP, as
manifested in Fig. 2h and i. EDX analysis for both HPCF and
HPCF@VNNP, as shown in Fig. 2c and f, confirmed the
inclusion of the V element in HPCF@VNNP. In addition,
Fig. 2g shows the elemental mapping images of the

HPCF@VNNP hybrid material, where the elements of carbon,
vanadium, nitrogen, and oxygen were homogeneously distribu-
ted throughout the entire nanofiber. The O signal was likely
due to the surface oxidation of VN.46 As such, the obtained
HPCF@VNNP nanofibers showed the advanced structure of a
higher crystallinity, uniform VN nanoparticles, and good poro-
sity, which would be helpful to reduce the resistance of ions
and electron transfer.

XPS, XRD, and BET measurements were then used to
examine the composition of HPCF@VNNP, as shown in Fig. 3.
The C 1s spectrum showed three fitting peaks: the peak at
284.8 eV can be ascribed to sp2 hybridized carbon in C–N
groups, and the other two peaks at 285.4 and 287.1 eV can be
assigned to C–OH, and CvO bonds, respectively53,54 (Fig. 3a).
In the N 1s XPS spectrum of the HPCF@VNNP, two well-
defined peaks were observed at 401.0, and 398.6 eV, corres-
ponding to the graphitic (N–Q) produced in the nitrogen-
doped carbon section and metal nitride [N (1s): 396.8–398.9
eV] of VN, respectively55,56 (Fig. 3b). As shown in Fig. 3c, the
characteristic peaks of O 1s, V 2p1/2, and V 2p3/2 were usually
studied together because their binding energies were very
close. The O 1s spectrum was divided into two main peaks at
531.1 and 532.7 eV, respectively. The peak at 531.1 eV demon-
strated the existence of a complex mixture of vanadium oxides
on the HPCF@VNNP surface, which included vanadium
oxides with different valence states of V that were not trans-
formed to nitrides completely under the thermal treatment
conditions.57 The other peak at 532.7 eV supported the exist-
ence of –OH groups on the HPCF@VNNP surface,58 which can
also improve the wettability of the electrode to the electrolyte
and enlarge the contact area between the electrode and electro-
lyte, a characteristic that will further enhance the electro-
chemical performance of the material. The peaks centered at
514.1, and 521.6 eV belonged to the vanadium in VN,58,59

while the peaks at 517.2, and 524.1 eV were ascribed to the
V–O component on the material surface.60 Therefore, based on
the analysis of the XPS spectra, it could be confirmed that
HPCF@VNNP is mainly composed of VN and carbon, together
with a small amount of complex vanadium oxides on the
surface. As shown in Fig. 3d, the XRD patterns of
HPCF@VNNP displayed a broad peak at 22°, due to amor-
phous carbon derived from the PAN nanofiber precursor,
which would contribute to the electrical conductivity of the
product. Moreover, one relatively strong peak was observed at
43.8° due to the (200) crystal planes, and two weak peaks at
37.7° and 63.7° that may be indexed to the (111), and (220)
diffractions of cubic VN (JCPDS Card no.73-0528), demonstrat-
ing that the vanadium-based groups were successfully con-
verted into VN.61

Nitrogen adsorption–desorption measurements were then
utilized to characterize the pore texture and pore size distri-
bution of the prepared carbon materials, as shown in Fig. 3e
and f. Apparently, the curve (Fig. 3e) showed a typical IV iso-
therm with an H3-type hysteresis loop at the pressure of P/P0 >
0.4, confirming a loose network and coexisting micro-, meso-,
and macropores in HPCF@VNNP.62 The pore size distribution

Fig. 1 SEM images of (a, and b) HPCF, and (c, and d) HPCF@VNNP; and
(e) TEM image of HPCF@VNNP.
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of HPCF@VNNP showed a range from 2.0 to 100.0 nm (Fig. 3f)
with an average pore radius of 19.4 nm calculated by the BJH
method using the adsorption branch of the isotherm. This
abundant mesoporous structure was important for efficient
diffusion and transport pathways to the interior voids of the
materials, and thus may enhance the rate capability of the
electrode.63 It is worth mentioning that the BET surface area
of the HPCF@VNNP was 357.8 m2 g−1, far higher than the
values reported recently for various VN materials (Table S1†).

The high BET surface area is mainly due to the process of
adsorbing –V that did not destroy the structure of PAN nano-
fibers, providing more active sites for the electrochemical
process.

Homogeneous dispersion of VN nanoparticles on hierarchi-
cal porous carbon fibers and the rational design of the VN/
carbon value predominantly depended on the feed ratio of
PAN to PAA-b-PAN-b-PAA (rN/A) during the preparation of spin-
ning solution. We thus systematically investigated the effect of

Fig. 3 X-ray photoelectron spectra of (a) C 1s, (b) N 1s, and (c) O 1s and V 2p for HPCF@VNNP, (d) X-ray diffraction pattern, (e) N2 adsorption–
desorption isotherms, and (f ) pore size distribution of HPCF@VNNP.

Fig. 2 TEM images and the related energy dispersive X-ray spectra of a single nanofiber of (a–c) HPCF, and (d–f ) HPCF@VNNP (inset is the
selected-area electron diffraction pattern); and (g) elemental mapping images of C, V, N, and O elements.
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rN/A, and the HPCF@VNNPs prepared at rN/A = 1.5 : 0.1 to
1.5 : 1.5 were named HPCF@VNNP-0.1 to HPCF@VNNP-1.5,
respectively. The process of thermal decomposition and the
constituent contents of the different HPCF@VNNP samples
were further examined by simultaneous thermogravimetric
analysis in air, as shown in Fig. 4. All samples were heated
from room temperature to 1000 °C at a heating rate of 10 °C
min−1. With the increase of temperature, all curves firstly
ascended and subsequently descended when the temperature
was increased from 200 to 500 °C. These results were mainly
due to the duplicate effect between the combustion weight
loss of carbon and oxidation weight gain of VN. Furthermore,
VN began to transform into V ∼ N ∼ O and further to V2O5

starting at 400 °C which caused the mass increase;64 and at
500 °C, a dramatic loss took place owing to the transformation
of carbon in the product into CO2. The mass ratios of VN to
carbon for HPCF@VNNP-0.5, HPCF@VNNP-1.0, and
HPCF@VNNP-1.5 were calculated to be 27 : 73, 11 : 89, and
9 : 91, respectively.

The effect of rN/A on the electrochemical performance of
HPCF@VNNPs was investigated by CV, GCD, and EIS measure-
ments in a 6.0 M KOH aqueous solution with a three-electrode
setup at room temperature, as shown in Fig. 5. All
HPCF@VNNP samples showed a similar shape of the CV and
charging/discharging curves (Fig. 5a and b). The CV curves of
HPCF@VNNPs had a quasi-rectangular shape with two
obvious symmetrical redox peaks, showing a typical character-
istic of both double layer and redox processes. In addition, the
redox peaks first became stronger and then weaker with a
decreasing rN/A value. According to the calculation, the mass
specific capacitances of HPCF@VNNP-0.1 to HPCF@VNNP-1.5
were 69.1, 127.5, 141.1, 204.6, 210.8, 176.2, and 136.5 F g−1 at
a current density of 1.0 A g−1, respectively. EIS tests were then
carried out over a frequency range of 0.01–105 Hz (Fig. 5c). The
Nyquist plot featured a high phase-angle impedance plot and
a low faradaic charge transfer resistance, indicating the fast
ion transfer behavior of HPCF@VNNPs. Typically,
HPCF@VNNP-1.0 exhibited a smaller equivalent series resis-
tance and faster ion transfer due to the high BET surface area
where the rich carbon content from nitrogen-doping not only

facilitated the diffusion and penetration of electrolyte ions to
abundant pores but also improved the electrical conductivity.65

Fig. 5d shows the specific capacitances at different current
densities. As the current density increased from 0.5 to 5.0
A g−1, the retention values of the capacitance for
HPCF@VNNP-0.1 to HPCF@VNNP-1.5 were 59.8, 67.0, 71.9,
60.7, 72.1, 67.7 and 51.3%, respectively. One can see that
HPCF@VNNP-1.0 exhibited the best overall electrochemical
performance. These data confirmed that the rN/A value, that
means the ratio of VN to carbon in the electrode material,
played an important role in the electrochemical storage
process: at too high or too low rN/A value, a high super-
capacitor performance cannot be obtained.

The detailed electrochemical properties of
HPCF@VNNP-1.0 are shown in Fig. 6. In all CV curves col-
lected at different scan rates (from 5.0 to 50.0 mV s−1), a pair
of broad redox peaks were observed in the potential range
from −1.1 to 0 V (Fig. 6a), indicating the capacitive mechanism
of HPCF@VNNP composed of both electrical double layer
capacitance and pseudo capacitance from faradaic reactions.66

Interestingly, even at high scan rates, the shape of the voltammo-
grams did not change drastically, manifesting superior
capacitive behavior of the electrode materials. Fig. 6b shows
the GCD curves for HPCF@VNNP-1.0 between −1.1 and 0 V at
a current density of 0.5 to 5.0 A g−1. The almost linear profiles
and symmetrical triangle shape corroborated the dominating
capacitive characteristic as well as outstanding reversibility
and rate capability during the process of charge storage.
Importantly, there was no apparent voltage drop (iR) related to
the internal resistance during the change of polarity, which
also manifested nearly perfect capacitive behavior.67 These
results were consistent with the CV data. The specific capaci-
tances of the samples tested at a current density of 0.5, 1.0,

Fig. 5 The electrochemical capacitance performance of HPCF@VNNP
mediated by various amounts of triblock copolymer: (a) CV, (b) GCD, (c)
electrochemical impedance spectroscopy curve; and (d) specific capaci-
tance at different current densities of 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0
A g−1, respectively.

Fig. 4 TGA curves of HPCF@VNNPs mediated by feeding various
amounts of triblock copolymer.
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2.0, 3.0, 4.0, and 5.0 A g−1 were estimated to be 240.5, 210.8,
193.5, 185.1, 178.5, and 173.4 F g−1, respectively, higher than
those reported earlier with other VN/C-based nanofibers.4,27,29

Significantly, the sample had a good cycling stability in 6 M
KOH aqueous solution (Fig. 6c) with a high capacitance reten-
tion of 98% even after 10 000 cycles at 2.0 A g−1, and the cou-
lombic efficiency retained 115%. The GCD curves recorded
after 10 000 cycles showed that the sample still maintained the
initial capacity, demonstrating the good electrochemical rever-
sibility with promising potential in the application of energy
storage devices.

To simulate the actual device behavior, the active material
of HPCF@VNNP was used as the negative electrode and

Ni(OH)2 as the positive electrode to assemble a hybrid super-
capacitor, HPCF@VNNP||Ni(OH)2. The electrochemical per-
formance of the pristine Ni(OH)2 nanoparticles is also given in
Fig. S3 in the ESI.† Moreover, to build a supercapacitor with
high operating voltage and high energy density, charge storage
on the positive and negative electrodes maintains the relation-
ship of q+ = q−. To balance the charge storage, the mass
matching of the positive and negative electrodes was opti-
mized by using the equation: m+/m− = (C− × ΔV−)/(C+ × ΔV+),
where m is the mass of the electrode material, C is the specific
capacitance of the electrode material, and ΔV is the potential
drop of the positive or negative electrode during the dischar-
ging process. In this study, the calculated optimal mass ratio
of Ni(OH)2 and HPCF@VNNP was 1 : 2.1. Hence, in a two-elec-
trode system, the mass loading of Ni(OH)2 and HPCF@VNNP
was 1.9 mg and 4.0 mg respectively. Fig. 7a depicts the CV
curves of HPCF@VNNP||Ni(OH)2 in the voltage range from 0
to 1.6 V at scan rates of 5.0 to 50.0 mV s−1. A couple of oxi-
dation and reduction peaks were observed, indicating pseudo-
capacitive properties corresponding to the redox reactions on
the surface of positive Ni(OH)2 and negative HPCF@VNNP
hybrids. The specific capacitances of the hybrid device
HPCF@VNNP||Ni(OH)2 at different current densities from 0.5
to 5.0 A g−1 at 0–1.6 V were calculated from the GCD curves to
be 110.4, 97.4, 86.0, 78.6, 72.7, and 67.6 F g−1, respectively
(Fig. 7b), confirming the high specific capacitance and good
capacitive behavior of the ASC. As shown in Fig. 7c, the EIS of
the hybrid devices was obtained at room temperature with the
frequency range from 0.01–105 Hz. It had a small intercept at
the real axis of 1.81 Ω, reflecting lower equivalent series resis-
tance in the electrochemical system (inset in Fig. 7c).
Moreover, the Nyquist plots featuring vertical curves in the
low-frequency region indicated lower ion diffusive resistivity
and nearly ideal capacitive behavior in devices. From the data,
about 61.3% of specific capacitance was retained when the

Fig. 6 The electrochemical capacitance performance of
HPCF@VNNP-1.0: (a) CV curves at various scanning rates; (b) GCD
curves at various current densities; (c) cycle life and columbic efficiency
(inset is the GCD comparison after 10 000 cycles); and (d) electro-
chemical impedance spectra.

Fig. 7 The electrochemical capacitance performance of the HPCF@VNNP||Ni(OH)2 ASC device: (a) CV curves at various scanning rates; (b) GCD
curves at various current densities; (c) electrochemical impedance spectroscopy curve; (d) specific capacitance at different current densities of 0.5,
1.0, 2.0, 3.0, 4.0, and 5.0 A g−1, respectively; (e) cycle life (inset shows the cycle life and columbic efficiency); and (f ) Ragone plot.
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current density was changed from 0.5 to 5 A g−1 for the hybrid
device (Fig. 7d). Fig. 7e shows the electrochemical stability of
HPCF@VNNP based hybrid supercapacitors HPCF@VNNP||
Ni(OH)2 tested at a current density of 2.0 A g−1. Obviously, the
hybrid device showed 78.2% retention of the original capaci-
tance after 10 000 cycles. The superior cycling stability can be
ascribed to the unique VN nanoparticles embedded in the
hierarchical porous carbon fiber in which the carbon matrix
not only enhanced the electrical conductivity but also accom-
modated the volume changes of VN and prevented their aggre-
gation during cycling processes.68

Energy density and power density are two additional impor-
tant parameters for the evaluation of the entire device, and the
Ragone plot is shown in Fig. 7f. One can see that at a power
density of 400 W kg−1, the HPCF@VNNP||Ni(OH)2 ASC deliv-
ered a high energy density of 39.3 W h kg−1. Even when the
power density was increased to 4000 W kg−1, the energy
density remained at 24.1 W h kg−1. Table S2 in the ESI† com-
pared the electrochemical performances of the various
VN-based electrodes reported in the literature. Notably, the
devices fabricatedusing HPCF@VNNP||Ni(OH)2 materials
showed far superior performances compared to the literature
results. In fact, the inset in Fig. 7f shows that the assembled
device in series can light up a red LED, proving that the device
has good application performance.

4. Conclusions

In summary, hierarchical porous carbon fiber@vanadium
nitride nanoparticles (HPCF@VNNP) were successfully pre-
pared by phase-separation mediated with a tri-block copolymer
and high temperature calcination in an atmosphere of
NH3 : N2 = 3 : 2 for high performance supercapacitors. The
structure was characterized by XRD, SEM, TEM, and BET
measurements showing the formation of hierarchical pores in
the carbon fiber and high distribution of vanadium nitride
nanoparticles. The reduced aggregation of the VN nano-
particles improved the electrical conductivity and the stability
of the electrode material. The prepared HPCF@VNNP showed
good electrochemical behaviors in a 6 M KOH aqueous electro-
lyte, with a specific capacitance of 240.5 F g−1 at a current
density of 0.5 A g−1 and a good rate capability with a capaci-
tance retention of 72.1% at 5.0 A g−1. Notably, the hybrid
device consisting of Ni(OH)2 as the positive electrode and
HPCF@VNNP as the negative electrode exhibited an ultrahigh
energy density of 39.3 W h kg−1 at a power density of 400 W kg−1,
and the energy density remained at 24.1 W h kg−1 even when the
power density was increased to 4000 W kg−1. These results indi-
cated that HPCF@VNNP is a promising electrode material for
high-performance supercapacitors.
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