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ABSTRACT: MoX2 (X = O, S) layered structures are promising
anode materials for lithium-ion batteries because of their intrinsically
high theoretical capacity. Yet, the poor electrical conductivity and
substantial volume change during reaction with Li+ ions greatly limit
their practical application. This can be mitigated by developing a
proper carbon framework for effective confinement of the growth of
active materials. Herein, a universal carbon framework template has
been exploited for the synthesis of thin MoX2 nanosheets
encapsulated in mesoporous hollow carbon frameworks (MHCFs)
by the confinement approach, forming a MoX2/C interconnected
network. The porous hierarchical architectures offer sufficient void
space for MoX2 nanosheets during the expansion process. Mean-
while, the confining effect of hollow carbon spheres can prevent
aggregation and spreading out from the carbon of MoX2 nanosheets to guarantee high structural integrity upon cycling (638 mA h
g−1 for MoO2/C at 1 A g−1 after the 1000th cycle and 525 mA h g−1 for MoS2/C after 200 at 1 A g−1).

KEYWORDS: MoX2 layered structure, universal hollow mesoporous carbon framework, encapsulated hierarchical structure,
confining effect, lithium-ion battery

■ INTRODUCTION

Two-dimensional (2D) nanomaterials, such as graphene,1,2

transition-metal dichalcogenides (e.g., MoS2 and VS2),
3−7

transition-metal oxides (e.g., MoO2 and MnO2),
8−13 tran-

sition-metal selenides (e.g., MoSe2 and WSe2),
14−16 and

phosphides,17 have attracted broad interest because of their
unique crystal structures and material properties.18−21 Among
them, MoX2 (X = O, S) layered nanostructures, with their high
theoretical specific capacity, are the most promising com-
pounds as efficient anode materials for LIBs.22−26 Nonetheless,
the large volume variations and poor conductivity of MoX2
have been identified as critical roadblocks to the further
development of lithium-ion batteries (LIBs).
These issues can be mitigated by incorporating the active

materials into porous carbon frameworks,27−31 and a range of
molybdenum-based materials combined with carbon nanoma-
terials with different morphologies and nanostructures have
been examined.32−36 Generally, carbon components in the
nanocomposite electrode are anticipated to effectively improve
the electrical conductivity and alleviate volume changes upon
cycling.37−40 For example, see hierarchical hollow MoO2/
nitrogen-doped carbon,41 MoO2@C core−shell nanofibers,42
MoS2/Ti3C2-MXene,43 hierarchical porous MoS2/C nano-
spheres,44 and V4C3-MXene/MoS2/C.

45 Unfortunately, in
these studies pulverization and aggregation tend to occur in
the carbon-supported molybdenum-based materials upon

cycling, which lead to the poor life and sluggish dynamics of
lithium-ion storage. Hence, the development of a universal
hollow carbon framework is of great importance for the growth
of active materials.
Herein, we employ a universal carbon framework template

to synthesize MoX2/C (X = O, S) hierarchical nanospheres,
which are composed of thin MoX2 nanosheets encapsulated in
mesoporous hollow carbon frameworks (MHCFs) with a
simple hydrothermal method. The rationally designed
hierarchically porous architecture contains abundant empty
space and compliant backbones to mitigate the volume change
effects upon cycling, facilitates rapid ion diffusion and transport
throughout the entire structure, and provides interpenetrating
conductive networks for electron transfer. Meanwhile, the
confining effect of hollow carbon spheres can prevent
aggregation and exfoliation. Electrochemical measurements
show that the obtained MoX2/C hierarchical nanospheres
exhibit excellent energy storage performances of LIBs. Such a
strategy can be extended to MoSe2/C materials, which are
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similar to the MoSe2/C composite synthesized using hard-
template methods.46,47

■ RESULTS AND DISCUSSION
The formation process of MoX2/C hierarchical nanospheres is
schematically illustrated in Figure 1a (details in the Supporting

Information). MHCFs were first synthesized by adopting a
surfactant-free procedure based on the self-assembly of
tetraethyl orthosilicate and resorcinol−formaldehyde, followed
by thermal annealing and chemical etching of SiO2 (Figure
S1).32 Scanning electron microscopy (SEM) measurements
show that MHCFs exhibit a smooth spherical shape of around
400 nm diameter (Figure 1b). Consistent results were
obtained with transmission electron microscopy (TEM)
measurements, where MHCFs can be seen to exhibit a hollow
structure with a porous carbon shell of about 20 nm thickness
(Figure 1c,d). After hydrothermal treatment, thin MoO2
nanosheets were then encapsulated in the prepared MHCFs
through a simple hydrothermal method, producing MoO2/C
hierarchical nanocomposites. The smooth surface of the
carbon spheres became rough because of the MoO2 nano-
sheets anchored on the carbon sphere surface, as evidenced in
SEM (Figure S2a,b) and TEM (Figures 1e and S2c,d)
measurements. Correspondingly, the diameter of the MoO2/
C hierarchical composite increases to ca. 420 nm. Excitingly,
the prepared hollow carbon framework template is universal
and can also be used for the synthesis of MoS2/C and MoSe2/
C hierarchical nanospheres (Figures 1f,g and S3 and S4).

Additionally, it is worth noting that hollow carbon frameworks
act as templates in the confined growth of active components.
To reveal the distribution of MoO2 nanosheets in the

internal cavity of MHCFs, TEM images were acquired with the
top and bottom parts of the hierarchical MoO2/C composites
microtomed off. As shown in Figure 2a, the MoO2 nanosheets
were mainly encapsulated in the hollow cores, and a small
amount of them was found within the carbon shells and
exterior surfaces. A comparison between the hollow (high-
lighted by the yellow circles) and filled structures after the
cutting treatment further proved the filling with the MoO2
nanosheets. The formation of a MoX2/C structure is further
confirmed by elemental mapping analysis based on energy-
dispersive X-ray (EDX) spectroscopy. The MoO2/C and
MoS2/C composites can be seen to entail C, Mo, and O
(Figure 2b−e) and C, Mo, and S (Figure S5a−d), and the
above elements are enriched at the edge of the nanospheres. In
addition, the line scan further confirms the spatial distributions
of C, Mo, O, or S along the lengthwise direction of the hollow
carbon sphere (Figures 2f and S5e). High-resolution TEM
(HRTEM) measurements indeed indicate that the carbon
shells are decorated with ultrathin nanosheets (Figures 2g,g1
and Figure S5f1,f2). Figures 2g2 and S5f2 reveal the formation
of a large number of exposed MoO2 and MoS2 nanosheets with
thicknesses of 2−5 layers. Meanwhile, the porous structure was
confirmed by Brunauer−Emmett−Teller (BET) measure-
ments of MoO2/C and MoS2/C, with specific surface areas
of 100.6 and 138.4 m2 g−1, respectively (pore size ranges from
1.8 nm to 4 and 2.2 nm, respectively; Figure S6), which was
conducive to electrolyte ion transport and reaction ki-
netics.48−50 For comparison, unsupported pure MoO2 and
MoS2 nanosheets exhibit an irregular morphology and were
made up of micron-sized sheets, with markedly lower BET
surface areas of 38.2 and 54.2 m2 g−1 for pure MoO2 and pure
MoS2 (Figure S9). The contents of carbon in MoO2/C and
MoS2/C calculated from the thermogravimetric analysis
(TGA) curves (Figure S10) were about 14.0 and 14.6 wt %,
respectively.
Figure 3a shows the crystallinity and composition of pure

MoO2 and hierarchical MoO2/C nanospheres by X-ray
diffraction (XRD). Both samples exhibit a series of well-
defined diffraction peaks at 2θ = 26.1°, 36.8°, 41.3°, 53.4°,
60.3°, and 66.4°, which can be assigned to the (−111), (111),
(210), (−312), (031), and (202) planes of a monoclinic MoO2
crystal (JCPDS 32-0671).41,50 Note that the carbon patterns in
hierarchical MoO2/C are likely overshadowed by the strong
signals of MoO2. In Raman spectroscopic measurements
(Figure 3b), both samples displayed two major vibrational
peaks centered at 818 and 992 cm−1 that can be indexed to
ν(Mo−O−Mo stretch) and ν(MoO stretch) of MoO2.

51,52

In addition, MoO2/C also exhibits two vibrational bands at
1392 and 1602 cm−1 due to the D and G bands of graphitic
carbon (MHCFs), respectively.53

The elemental composition and valence state of the MoO2/
C composite are then analyzed by XPS measurements. In the
XPS spectrum (Figure 3c), five distinct peaks can be identified
at 231.9 eV (Mo 3d), 284.0 eV (C 1s), 397.2 eV (Mo 3p3/2),
414.2 eV (Mo 3p1/2), and 529.9 eV (O 1s), consistent with the
elemental composition of MoO2/C.

52 From the high-
resolution scan of the Mo 3d electrons (Figure 3d),
deconvolution yields two doublets at 228.4/231.7 and 230.0/
234.6 eV, due to the 3d5/2 and 3d3/2 electrons of MoIV and
MoVI, respectively. The former is consistent with the formation

Figure 1. (a) Schematic illustration of the preparation of MoX2/C
composites. (b) SEM and (c and d) TEM images of MHCFs. TEM
images of (e) MoO2/C, (f) MoS2/C, and (g) MoSe2/C.
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of MoO2, whereas the latter likely arises from the surface
oxidation of metastable MoO2 into MoO3.

54,55 In the O 1s
spectrum (Figure 3e), two peaks can be resolved, where the
main peak at 529.6 eV corresponds to oxygen in Mo−O,
whereas the minor one at 531.2 eV is due to residual oxygen-
containing groups bonded with carbon in the hollow carbon
spheres. In the C 1s spectrum (Figure 3f), four components
can be resolved, pointing to C−C (283.5 eV), C−O (285.0
eV), CO (286.7 eV), and O−CO (288.5 eV).56,57

The electrochemical performance for Li+ storage by the
obtained nanocomposites was assessed with a CR2032 coin
cell. Parts a and b of Figure 4 show the four initial cyclic
voltammetry (CV) measurements of the MoO2/C and pure
MoO2 electrodes under a potential scan rate of 0.1 mV s−1. At
the positions of 0.68, 1.25, and 1.51 V, three reduction peaks
appeared in the first cycle, respectively. The two peaks that
appeared at 1.51 and 1.25 V suggest that the Li+ inserts into

MoO2 to form Lix1MoO2 and Lix2MoO2 (x2 > x1). This process
was accompanied by phase transformation. It is worth noting
that a broad irreversible peak that appeared at 0.68 V is
associated with irreversible side reactions and the formation of
a solid electrolyte interphase,58 which disappeared during
subsequent cycles. Two oxidation peaks appeared at 1.4−1.7 V,
indicating the oxidation of Mo0 to Mo4+ and the decom-
position of Li2O.

59 Two redox couples (1.51/1.71 and 1.25/
1.42 V) were observed during subsequent cycles, which are
attributed to the transformation of molybdenum oxides
between the monoclinic and orthorhombic phases caused by
the insertion/extraction of lithium ions.60 The lithium
insertion mechanism is based on the following conversion:

x xMoO (monoclinic) Li e

Li MoO (orthorhombic)x

2 1 1

21

+ +

→

+ −

(1)

Figure 2. (a) TEM image of a MoO2/C cross section after microtoming. (b−e) Annular dark-field scanning TEM images and the corresponding
EDX elemental maps of C, Mo, and O. (f) EDX line-scan profiles and (g, g1, and g2) HRTEM images of MoO2/C.

Figure 3. (a) XRD patterns and (b) Raman spectra of MoO2/C composites and pure MoO2. (c) XPS survey spectrum and (d−f) high-resolution
scans of the (d) Mo 3d, (e) O 1s, and (f) C 1s electrons of the MoO2/C composites.
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x x x xLi MoO (orthorhombic) ( )Li ( )e

Li MoO (monoclinic)

x

x

2 2 1 2 1

2

1

2

+ − + −

→

+ −

(2)

x xLi MoO (4 )Li (4 )e Li Ox 2 2 2 22
+ − + − →+ −

(3)

As shown in Figure 4c, one can see that the MoO2/C and pure
MoO2 electrodes have similar profiles; the former provided a
larger integral area than the latter, which indicated that it has a
higher capacity.61 Indeed, the MoO2/C electrode exhibits
higher charge/discharge capacities than the pure MoO2
electrode (Figure 4d), where the improved charge/discharge
kinetics is most possibly due to the enhanced electrical
conductivity of the composite electrode.
Figure S11 shows the first charge/discharge profiles of the

MoO2/C and pure MoO2 electrodes at 0.1 A g−1. The MoO2/
C electrode delivered a first discharge/charge capacity of
1190/863 mA h g−1 (CE is about 72.5%). The reversible
discharge capacity of the initial cycles increased gradually for
the MoO2/C electrode, which can be attributed to the
activation process of the electrodes (Figure 4e). Notably, the
MoO2/C electrode presents a remarkable rate capability,
delivering the satisfactory capacities of 851, 980, 935, 809, 654,
453, 326, and 252 mA h g−1 at 0.1, 0.2, 0.5, 1, 2, 5, 8, and 10 A
g−1, respectively, compared to the pure MoO2 electrode
(Figure 4f). Furthermore, the MoO2/C electrode delivers a
better cycling stability and maintains a higher capacity of 772
mA h g−1 after 100 cycles at 0.1 A g−1 (Figure 4g). Strikingly,
the long-term cycling stability tested at a high current density
of 1 A g−1 showed a good discharge capacity of 638 mA h g−1

after the 1000th cycle (Figure 4h). For comparison, the pure
MoO2 electrode exhibited a markedly lower capacity of 296
mA h g−1 at 0.1 A g−1 after the 100th cycle. The cycling
stability of the MoO2/C electrode was most likely due to the
abundant empty space and compliant backbone mitigating the
volume change effects upon cycling, all due to the favorable
porous carbon framework.
Meanwhile, the electrochemical performance of the MoS2/C

electrode was also measured. Compared with pure MoS2
(Figure S11b), the CV curves of MoS2/C were almost
identical except in the first cycle, indicating excellent

electrochemical stability (Figure S11a). The reduction peak
emerging at 1.16 V corresponds to lithium intercalation
between the interlayers of MoS2 to form LixMoS2 in the initial
cathodic scan, and the following peak at 0.55 V represents the
conversion reaction to molybdenum nanoparticles embedded
in Li2S.

35,62 During the subsequent anodic scan, two major
oxidation peaks at 1.73 and 2.36 V can be observed, which are
associated with the conversion of molybdenum and Li2S to the
MoS2 phase.35,36 After the first cycle, the CV curves exhibit
good reproducibility and almost coincide, indicating high
reversibility of the electrode. For the first discharge/charge
curves of the MoS2/C electrode at 1 A g−1, the specific
capacities were 1587/1238 mA h g−1, affording a high CE of
78% (Figure S11c). The discharge/charge profiles of the
second, third, and fifth cycles overlap well, indicating the high
electrode reversibility. As shown in Figure S11d, the MoS2/C
electrode displays a good rate performance of 241 mA h g−1 at
10 A g−1. The specific capacity can well recover to 913 mA h
g−1 along with the current density after going back to 0.1 A g−1.
It is noted that the specific capacity of the MoS2/C electrode
exhibits good cycling stability at a high current density of 1 A
g−1 and remains at 525 mA h g−1 in the 200th cycle (Figure
S11e).
These results show outstanding energy storage performances

of the MoO2/C and MoS2/C electrodes, which were even
better than the leading results of MoO2- and MoS2-based
electrodes reported in the literature (Tables S1 and S2).
Moreover, the electrochemical performance of the MHCF
electrode was also evaluated. Data and a detailed discussion are
presented in Figure S12. Here, we only briefly draw a
conclusion: the MHCF framework exhibited good rate and
stable cycling performances; however, it is noteworthy that the
reversible specific capacity of the MHCF electrode is
drastically lower than those of the MoO2/C and MoS2/C
electrodes, suggesting that the hierarchical interconnected
conductive networks formed by the confined growth of thin
MoX2 nanosheets within the MHCFs increased the capacity
performance. Meanwhile, the fact that the MoO2/C and
MoS2/C electrodes exhibited markedly better cycling stability
than the corresponding pure MX2 suggests that the MHCF
framework played a key role in mitigating the volume change

Figure 4. Electrochemical performances of the MoO2/C composites and pure MoO2 nanosheets as anode materials for LIBs: (a and b) CV profiles
over a voltage range of 0.005−3.0 V at a scan rate of 0.1 mV s−1; (c) current-normalized curves; (d) second-cycle charge/discharge profiles at 0.1 A
g−1; (e) charge/discharge profiles of MoO2/C at 0.1 A g−1; (f) rate performance; (g) cycling performance at 0.1 A g−1; (h) cycling performance at
1 A g−1 of MoO2/C composites.
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effects upon cycling (Figures 4g and S11e). In addition, TEM
examinations were adopted to investigate the structural
stability of the MoX2/C (X = O, S) electrodes. Clearly, the
spherical structure was well retained, with only some small
changes in the MoX2 (X = O, S) nanosheets (Figures S13 and
S14).
According to Dunn and co-workers,63 the pseudocapacitive

effect, which occurs primarily on or near the surface, promotes
rapid ion diffusion of MoX2/C electrodes with hierarchical
porous structure, high specific area, and interconnected
conductive networks.64,65 Thus, we further studied the Li+

storage kinetics by CV curves at 0.1−0.8 mV s−1, so as to
measure the pseudocapacitive contribution to the excellent
electrochemical performance of the MoX2/C electrodes
(Figure 5a,b). The degree of capacitive effect can be
qualitatively analyzed by the relationship between the scan
rate (v) and peak current (i): i = aνb (where a and b are both
constants).66,67 The b value ranges from 0.5 (diffusion-
controlled process) to 1.0 (capacitive-controlled process),
which can provide insight into the charge storage mechanism.
The b value was calculated based on the slopes of the log i−log
v plots (Figure 5c). The b values are all close to 1 (MoO2/C,
O1 = 0.89, R1 = 0.86; MoS2/C, O1 = 1.09, R1 = 0.98); this
phenomenon indicated that the lithium storage type was
mainly from the capacitance behavior, resulting in fast reaction
kinetics.
To better understand the capacitive capacity contribution to

the total measured current, the total pseudocapacitive
contribution can be calculated through the relationship i =
k1ν + k2ν

1/2 (k1ν and k2ν
1/2 represent the capacitive and

diffusion-controlled reactions at the corresponding voltage,
respectively).68,69 Visibly, Figure 5d exhibits the capacitive
contributions of the MoX2/C electrodes at 0.1−0.8 mV s−1,
and the capacitive contribution ratio enhances gradually from
0.1 to 0.8 mV s−1. Besides, at a high scan rate of 0.8 mV s−1,
the capacitive contributions (green section) were calculated to
be 93% (MoO2/C, Figure 5e) and 87% (MoS2/C, Figure 5f).
The high capacitive contribution is closely related to the
unique structure of MoX2/C materials, which improves the
electrochemical performance.

Taken together, the results presented above strongly confirm
that the MoX2/C composites exhibited much enhanced
electrochemical performance, in comparison to pure MoX2
and MHCFs, likely due to the following factors (Figure 6). (i)

The hierarchical architecture assembled from thin MoX2
nanosheets offers short ion diffusion paths and fast Li+

transport kinetics. (ii) The hierarchically porous carbon
nanocomposites provide abundant empty space and compliant
backbones to mitigate the volume change upon cycling and
facilitate electrolyte ion transport and electron transfer. (iii)
The interconnected conductive networks ensure the structural
integrity of the nanocomposites.

■ CONCLUSIONS
In summary, MoX2/C (X = O, S) hierarchical nanospheres
have been successfully synthesized with a universal carbon
framework template. They are composed of thin MoX2
nanosheets encapsulated in MHCFs, with a simple hydro-
thermal method. Interestingly, the prepared hollow carbon
framework template is universal, and it can also be used for the
synthesis of MoSe2/C hierarchical nanospheres. The resulting
MoX2/C hierarchical architectures can not only limit
aggregation of the MoX2 nanosheets but also alleviate volume
expansion during lithium insertion/extraction. Moreover, by
analysis of the reaction kinetics of MoX2/C composites, the
excellent rate capabilities and eminent cycling stability can be

Figure 5. CV curves at different scan rates of MoO2/C (a) and MoS2/C (b). (c) Values of b of MoO2/C and MoS2/C. (d) Capacitive contribution
ratio at various sweep rates of MoO2/C and MoS2/C. Capacitive contributions at 0.8 mV s−1 of MoO2/C (e) and MoS2/C (f).

Figure 6. Schematic illustration of the transport paths of Li+ ions and
electrons and the lithiation/delithiation process in the pure MoX2
nanosheets and MoX2/C hierarchical composites.
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attributed to the hierarchical porous structure and inter-
connected conductive networks that facilitate ion diffusion and
electron transport, in comparison to pure MoX2. Results from
this study highlight the significance of the confined growth of
MoX2 nanosheets within a carbon framework in the structural
engineering of molybdenum-based anode materials for LIBs.
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