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ABSTRACT: Metal−nitrogen−carbon (MNC) nanocomposites have been hailed
as promising and efficient electrocatalysts toward oxygen reduction reaction
(ORR), due to the formation of MNx coordination moieties. However, MNC
hybrids are mostly prepared by pyrolysis of organic precursors along with select
metal salts, where part of the MNx sites are inevitably buried in the carbon matrix.
This limited accessibility compromises the electrocatalytic performance. Herein,
we describe a wet-impregnation procedure by facile thermal refluxing, whereby
palladium is atomically dispersed and enriched onto the surface of hollow,
nitrogen-doped carbon cages (HNC) forming Pd−N coordination bonds. The
obtained Pd-HNC nanocomposites exhibit an ORR activity in alkaline media
markedly higher than that of metallic Pd nanoparticles, and the best sample even
outperforms commercial Pt/C and relevant Pd-based catalysts reported in the
literature. The results suggest that atomic dispersion and surface enrichment of
palladium in a carbon matrix may serve as an effective strategy in the fabrication of high-performance ORR electrocatalysts.
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■ INTRODUCTION

Oxygen reduction reaction (ORR) is a critical process at the
cathodes of fuel cells and metal−air batteries, where the
sluggish electron-transfer kinetics has been recognized as a
major bottleneck that limits the device performance.1−3

Platinum-based nanoparticles have been used as the catalysts
of choice toward ORR.4−7 Palladium also exhibits apparent
ORR activity. In the well-known “volcano plot”, bulk palladium
shows a moderate oxygen adsorption energy, yet it remains too
strong as compared to that of platinum.2,8 Therefore, a range
of structural variables have been examined to manipulate the
electronic structure of Pd so as to further enhance the ORR
activity, such as nanoparticle size and shape,9−12 alloying,13,14

and interfacial interactions with substrate supports/capping
ligands.15−18 Atomic dispersion of Pd into a nitrogen-doped
carbon matrix forming PdNx moieties represents a new strategy
to reach the apex of the “volcano plot”.15,19 In such single atom
catalysts (SACs),20,21 the catalytic activity, durability, and
selectivity can be enhanced by the unique metal−support
interfacial interactions as compared to their corresponding
nanoparticle or bulk counterparts.22−31

SACs are prepared predominantly by pyrolysis. For instance,
Zhou et al.32 prepared Pd single atoms by pyrolysis of N-doped
graphene with Pd salts at 800 °C. The obtained sample showed
a 93.5% selectivity in the semi-hydrogenation of acetylene to

ethylenea performance superior to that (56%) with Pd
nanoparticles. A similar behavior was also observed by Wei et
al.,33 where Pd nanoparticles encapsulated by zeolitic imidazole
frameworks 8 (ZIF-8) were transformed into Pd single atoms
by pyrolysis at 900 °C, and the resultant sample showed a
better catalytic selectivity (93.4%) than Pd nanoparticles
(71.8%). In these studies, the catalytic activity was ascribed to
the formation of PdNx structures. However, high-temperature
pyrolysis inevitably renders part of the resulting PdNx moieties
to be buried within the carbon matrix and become inaccessible,
which compromises the overall catalytic performance.23,24,34,35

This issue can be effectively mitigated by wet impregnation,
whereby metal centers are immobilized mostly onto the surface
of the substrate support, and the surface enrichment facilitates
accessibility of the catalytic centers. For instance, Podyacheva
et al.36 used N-doped carbon nanotubes to capture Pd single
atoms (0.2−0.5 wt %) in acetone, followed by H2 reduction.
The PdNx active sites exhibited a higher turnover frequency
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(TOF, 0.081 s−1) than Pd particles (∼0.06 s−1) toward formic
acid decomposition at 125 °C. Bulushev et al.37 soaked N-
doped mesoporous carbon into a palladium salt solution to
produce single Pd active sites (∼1 wt %). The sample that
consisted of isolated Pd(II) cations demonstrated a TOF over
3 times higher than that of commercial Pd powders toward
hydrogen production from formic acid. Nevertheless, in these
earlier studies, only a small number of PdNx active sites were
formed because of the low concentration of N dopants in the
carbon matrices, which limited the eventual catalytic perform-
ance.
It should be noted that studies of palladium SACs for ORR

have been scarce, although atomic palladium species are
known to exhibit more optimal binding for oxygen
intermediates than the bulk metal of palladium, and drastically
enhanced mass activity.19,38−40 For instance, Passaponti et al.38

deposited N-coordinated Pd(II) macrocyclic complexes on
carbon nanotubes and observed apparent ORR activity with an
onset potential (Eonset) of +0.95 V vs RHE and a half-wave
potential (E1/2) of +0.86 V, markedly better than that of a
polycrystalline Pt electrode (Eonset = +0.91 V and E1/2 = +0.82
V). Xiang et al.39 reported that Pd single atoms supported on
manganese(IV) oxide−carbon nanotube (MnO2−CNT) nano-
composites exhibited an optimized binding strength to ORR
intermediates, with a much higher Pd mass activity (484 A g−1

at +0.90 V) than that of commercial Pd/C (20 A g−1). Arrigo
et al.19 also observed that PdNx in Pd-doped carbon nanotubes
improved the ORR activity with an Eonset of +0.88 V, in
comparison to only +0.75 V with metallic Pd nanoparticles.
Yet, the ORR performance of these palladium-based catalysts
remains subpar as compared to that of state-of-the-art Pt/C.
Herein, we describe a wet-impregnation procedure based on

facile thermal refluxing41,42 to embed Pd metal centers onto
the surface of N-doped porous carbon cages (HNC) that were
prepared a prior pyrolytically from ZIF-8. The resulting Pd-
HNC nanocomposites were found to exhibit abundant micro/
meso/macropores decorated with pyridinic/pyrrolic nitrogen
dopants, which facilitated the chelation of metal ions.43,44

Because the Pd centers resided mostly on the carbon surface,
the electrochemical accessibility was maximal, a critical feature
for the optimization of the electrocatalytic (mass) activity.
Experimentally, we observe that whereas a small number of Pd
nanoparticles were also produced in the samples, the Pd SACs
in Pd-HNC played a dominant role in ORR electrocatalysis,
and the sample with a saturated Pd loading even outperformed
commercial 20% Pt/C with an E1/2 that was 40 mV more
positive.

■ EXPERIMENTAL SECTION
Chemicals. 2-Methylimidazole (CH3C3H2N2H, 99%, Acros

Organics), tannic acid (C76H52O46, certified ACS, Electron Micros-
copy Sciences), ethylenediaminetetraacetic acid disodium salt
dihydrate (EDTA, ACS, Calbiochem), zinc nitrate hexahydrate
(Zn(NO3)2·6H2O, certified ACS, Fisher Chemicals), palladium(II)
acetate (Pd(OAc)2, 99.98%, Alfa Aesar), potassium hydroxide (KOH,
certified ACS, Fisher Chemicals), potassium thiocyanate (KSCN,
Spectrum Chemicals), and Pt/C (20 wt %, Alfa Aesar) were used as
received without further purification. Water was supplied from a
Barnstead Nanopure water system (18.3 MΩ·cm).
Synthesis of ZIF-8. In a typical synthesis,45 1.116 g of Zn(NO3)2·

6H2O was dissolved in 30 mL of methanol in a vial, and 1.232 g of 2-
methylimidazole was dissolved in 30 mL of methanol in another vial.
These two solutions were then mixed under sonication for 10 min to
form a milky-white solution. The solution was transferred to a 100 mL

Teflon-lined stainless-steel autoclave and heated at 120 °C for 2 h,
producing a milky precipitate that was collected via centrifugation at
6000 rpm for 5 min, rinsed three times with methanol, and dried
under vacuum at 50 °C for 12 h. The obtained product was the ZIF-8
crystals.

Synthesis of Hollow ZIF-8. 80 mg of the as-prepared ZIF-8
crystals was dispersed in 3 mL of Nanopure water under sonication
for 20 min, into which was then injected 7 mL of a tannic acid
solution (5 mg mL−1 in water) under magnetic stirring for 10 min to
form an orange solution. After centrifugation, the precipitates were
rinsed three times with water and then dried under vacuum at 50 °C,
affording hollow ZIF-8.

Synthesis of HNC. HNC was prepared by pyrolysis of hollow
ZIF-8. Experimentally, the hollow ZIF-8 powders prepared above
were transferred into a ceramic boat, which was then placed into a
tube furnace, heated to 900 °C at a ramp rate of 5 °C min−1, and kept
at 900 °C for 3 h under a nitrogen atmosphere. The pyrolyzed sample
was cooled naturally, which was denoted as HNC.

Synthesis of Pd-HNC. Under sonication for 20 min, 20 mg of
HNC was dispersed in 30 mL of acetonitrile in a flask, along with the
addition of a certain amount of Pd(OAc)2 (i.e., 1, 2, 5, or 10 mg). The
mixture was refluxed at 70 °C for 10 h in an oil bath, before the
precipitates were collected by centrifugation and dried under vacuum
at 50 °C for 12 h. The resulting samples were termed Pd-HNC1, Pd-
HNC2, Pd-HNC5, and Pd-HNC10, respectively.

A control sample PdNP/HNC was prepared by NaBH4 reduction
of Pd(OAc)2 in the presence of HNC, where Pd nanoparticles were
deposited on the HNC surface. Briefly, 20 mg of HNC was dispersed
in 15 mL of acetonitrile with 1.5 mg of Pd(OAc)2 (0.1 mg mL−1) in
an ice bath, into which was then injected 250 μL of a freshly prepared
NaBH4 solution (7 mg mL−1). The resulting precipitates were
centrifuged and dried under vacuum at 50 °C for 12 h.

Characterizations. Transmission electron microscopic (TEM)
measurements were performed with a JEOL JEM-2100F electron
microscope. X-ray photoelectron spectra (XPS) were acquired with a
PHI-5400/XPS instrument with an Al Kα source operated at 350 W
and 10−9 Torr. X-ray diffraction (XRD) patterns were collected with a
Bruker D8 Advance diffractometer with Cu Kα radiation (λ = 0.15418
nm). The specific surface areas of the samples were measured by using
Langmuir and Brunauer−Emmett−Teller (BET) methods on a
Micromeritics ASAP 2020 porosimetry system at 77.3 K. The
adsorption branches of the isotherms were used to obtain the pore
width distribution curves by using nonlocal density functional theory
(NLDFT). Contents of metal elements in the catalysts were
quantified by using inductively coupled plasma optical emission
spectroscopy (ICP-OES) on a PerkinElmer Optima instrument. UV−
vis absorption spectra were acquired with a PerkinElmer Lambda 35
UV−vis spectrometer.

X-ray Absorption Spectroscopy (XAS). Pd K-edge XAS data
were collected at the CLS@APS (Sector 20-BM) beamline at the
Advanced Photon Source (7.0 GeV) in Argonne National Laboratory
(Chicago, IL). Powdered samples were measured in fluorescence
mode simultaneously with a Pd foil reference. All measurements were
conducted at room temperature and ambient pressure. Extended X-
ray absorption fine structure (EXAFS) data were transformed and
normalized into k- and R-space using the Athena program following
conventional procedures.46 A k weighting of 2 was used to obtain all
FT-EXAFS spectra. A k range of 3.5 to 11.0 Å−1 and a R range of 1.0
to 3.3 Å were used. Self-consistent multiple-scattering calculations
were performed using the FEFF6 program to obtain the scattering
amplitudes and phase-shift functions used to fit various scattering
paths with the Artemis program. In the fitting of all samples, the E0
values were correlated together to minimize the number of
independent values, allowing reliable fitting results to be obtained.

Electrochemistry. All electrochemical tests were performed with
a CHI 710 electrochemical workstation in a conventional three-
electrode cell, using a Ag/AgCl (1 M KCl) electrode as the reference
electrode, a graphite rod as the counter electrode, and a polished
rotating ring (gold) disk (glassy carbon) electrode (RRDE, from Pine
Instrument Co.) as the working electrode. The Ag/AgCl electrode
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was calibrated against a reversible hydrogen electrode (RHE), and all
potentials in this study were referenced to this RHE. During the ORR
tests, the ring potential was set at +1.5 V vs RHE. To prepare the
catalyst inks, 2 mg of the samples obtained above was added into 1
mL of an isopropanol/water (3:1 v/v) mixture and 10 μL of a 100 wt
% Nafion solution. The suspension was sonicated to form a
homogeneous ink. 20 μL of the ink was then drop-cast onto the
glassy carbon disk electrode (surface area 0.246 cm2), dried at room
temperature, and coated with 5 μL of a 20 wt % Nafion solution,
corresponding to a catalyst loading of 0.162 mg cm−2.

■ RESULTS AND DISCUSSION
The synthetic procedure of the Pd-HNC samples entails four
major steps. As illustrated in Figure 1a, the first step is
hydrothermal synthesis of ZIF-8 powders from zinc(II) nitrate
and 2-methylimidazole.47 Tannic acid is then used to etch the
inner part of ZIF-8, resulting in the formation of a hollow
structure.48−50 Notably, in comparison to other template-based
methods to produce hollow nanostructures,25,51 chemical
etching by tannic acid can not only facilely remove the ZIF-
8 inner cores but also retain the pristine shape.47,52 Subsequent
pyrolysis at 900 °C leads to effective carbonization of the
hollow ZIF-8 precursor into HNC with abundant nitrogen
dopants.43 During pyrolysis, the volatilization of the zinc
compounds within the hollow ZIF-8 leads to the formation of
extensive porosity in the carbon matrix. Palladium species are
then impregnated onto the HNC surface by thermal refluxing
of HNC and palladium(II) acetate, most likely by virtue of the
formation of Pd−N bonds, leading to atomic dispersion and
surface enrichment of the Pd centers (Figure 1b). Note that a
small number of Pd nanoclusters can also be formed at high
palladium feeding ratios.
Four Pd-HNC samples (Pd-HNC1, Pd-HNC2, Pd-HNC5,

and Pd-HNC10) were prepared with the addition of 1, 2, 5, and
10 mg of Pd(OAc)2 to 20 mg of HNC, respectively. Note that
for the Pd-HNC10 sample, the color of the supernatant
remained virtually unchanged before and after thermal

refluxing, suggesting saturated loading of Pd into the HNC
matrix (Figure S1). The exact Pd contents in the samples were
then quantitatively assessed by ICP-OES measurements (Table
S1): 0.87 wt % for Pd-HNC1, 1.75 wt % for Pd-HNC2, 4.36 wt
% for Pd-HNC5, and 7.77 wt % for Pd-HNC10. For the control
sample PdNP/HNC where Pd nanoparticles were deposited
onto the HNC surface by NaBH4 reduction of Pd(OAc)2, the
palladium content was estimated to be 2.61 wt %.
The loading of Pd into the HNC matrix led to a marked

change of the sample porosity. The inset to Figure 1c shows
the N2 sorption isotherms of HNC and Pd-HNC10. For the
HNC sample, one can see a sharp increase of the adsorbed N2
quantity at low relative pressures, suggesting a substantial
number of micropores. In fact, NLDFT fitting shows that the
HNC sample was dominated with micropores (∼1 nm), as
evidenced in the pore-size distribution diagram (Figure 1c).
Furthermore, in contrast to the porous carbon derived
pyrolytically from solid ZIF-8 powders (without tannic acid
etching) reported in the literature,50 the HNC sample
demonstrated a huge adsorption−desorption hysteresis loop
and a range of mesopores between 2 and 10 nm. This suggests
that HNC consisted of a hierarchical structure with mesopores
and micropores (Figure S2)a unique feature conducive to
enhanced accessibility of the catalytic active sites on the carbon
matrix and electrochemical mass transfer as compared to solid
nitrogen-doped carbon (Figure S3).23 Interestingly, after
thermal refluxing with Pd(OAc)2, the specific surface area,
based on the BET method, was found to decrease markedly by
about 80% from 410.21 m2 g−1 for HNC to only 85.39 m2 g−1

for Pd-HNC10. In fact, from Figure 1c, one can see that
micropores (∼1 nm) disappeared almost completely from the
pore size distribution plot, consistent with the impregnation of
Pd species into the HNC matrix most likely by the N dopant/
defect sites, and the fact that the hysteresis loop remained in
the N2 adsorption−desorption isotherm indicates that the Pd-
HNC10 sample mainly contained mesopores (Figure S2).

Figure 1. Schematic illustrations of (a) the preparation of Pd-HNC, where (b) both atomically dispersed PdNx sites and palladium nanoclusters
may be formed depending on the initial feed of palladium. (c) Pore size distribution profiles of HNC and Pd-HNC10. Inset is the corresponding
nitrogen sorption isotherms.
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The morphology of the Pd-HNC samples was then
characterized by TEM measurements. From Figure 2a, the
Pd-HNC10 sample can be seen to display a cage-like structure
with a diameter of around 200 nm and a shell thickness of ca.
20 nm. Similar hollow structures are produced with other Pd-
HNC samples (Figure S4), and extensive mesoporosity can be
seen in all samples. At higher magnifications (Figure 2b,c), one
can see that the sample surface was also decorated with a few
nanoparticles of ca. 3 nm in diameter, and the number of
nanoparticles diminishes with decreasing loading of Pd(OAC)2
in thermal refluxingnone can be found with Pd-HNC1
(Figure S4). The nanoparticles display well-defined lattice
fringes with a d spacing of 0.23 nm that can be ascribed to the
(111) planes of fcc palladium,53,54 and these Pd nano-
particles55−57 can be seen to be partly encapsulated within a
carbon shell. By contrast, no carbon encapsulation was
observed for the palladium nanoparticles in PdNP/HNC
(also ca. 3 nm in diameter), which clustered onto the HNC
surface (Figure S5), with the {111} facets clearly identified in
the fast Fourier transform (FFT) patterns.
Further structural details were obtained from high angle

annular dark field scanning TEM (HAADF-STEM) measure-
ments and the corresponding elemental mapping studies based
on energy-dispersive X-ray (EDX) analysis (Figure 2d). One
can see that (a) nitrogen (and oxygen) is distributed rather
evenly over the entire carbon matrix, confirming successful
nitrogen doping of the carbon skeletons, and (b) in addition to
the few Pd nanoparticles (dotted yellow circles) a large

number of palladium atomic species can also be seen to be
homogeneously dispersed within the HNC matrix (Figure 2d
and Figure S6).
Consistent results were obtained in XRD measurements.

From Figure S7, both PdNP/HNC and Pd-HNC10 samples
can be seen to exhibit only a broad diffraction peak at 2θ =
39.5°, which can be ascribed to the (111) crystalline planes of
fcc palladium (JCPDS no. 96-101-1105).58 This diffraction
feature was not observed with HNC alone or other Pd-HNC
samples prepared at reduced Pd loadings, consistent with the
results from TEM measurements (Figure 1 and Figure S4).
XPS measurements were then performed to examine the

elemental composition and valence states of the samples. From
the survey spectra in Figure S8, the elements of C, Pd, N, and
O can be readily identified at 284, 338, 400, and 531 eV,
respectively, for all Pd-HNC and PdNP/HNC samples, from
which the Pd content was found to increase with the increasing
feed ratio of Pd(OAc)2: 3.55 wt % for Pd-HNC1, 7.74 wt % for
Pd-HNC2, 6.58 wt % for Pd-HNC5, and 17.48 wt % for Pd-
HNC10, in comparison to 9.88 wt % for PdNP/HNC (Table
S2). One may note that these concentrations are markedly
higher than those obtained by ICP-OES measurements (Table
S1), suggesting that Pd was indeed predominantly situated and
enriched on the HNC surface, as XPS probes only the surface
layers of the samples. The high-resolution scans of the Pd 3d
electrons are depicted in Figure 3a, where deconvolution can
be seen to yield two doublets. The first pair (red peaks) at
335.8 and 341.1 eV can be attributed to the 3d3/2 and 3d5/2

Figure 2. (a−c) Representative TEM images of Pd-HNC10 at varied magnifications. (d) HAADF-STEM image of Pd-HNC10 and the
corresponding elemental maps of carbon, nitrogen, oxygen, palladium, and overlap. The few Pd nanoparticles are highlighted in dotted yellow
circles.
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electrons of metallic palladium, most likely due to the few
nanoparticles observed in TEM measurements (Figure
2).19,37,59,60 The other pair (purple peaks) appear at higher
binding energies of 337.9 and 343.2 eV, comparable to those of
Pd2+ species,61,62 consistent with results from HAADF-STEM
measurements (Figure 2d), which clearly showed atomic
dispersion of Pd2+ species within the HNC matrix. It should be
noted that the binding energies of Pd2+ in Pd-HNC are much
higher than those of PdO (ca. 336.5 and 341.8 eV) but lower

than those of Pd(OAC)2 (ca. 338.5 and 343.8 eV),19,61,63−65

suggesting that the Pd2+ species in Pd-HNC were unlikely due
to the surface oxidation of Pd nanoparticles or excessive metal
precursors. Moreover, based on the integrated peak areas, the
atomic ratio of Pd2+:Pd0 in the samples can be seen to increase
with decreasing Pd(OAC)2 feed: at 5.6 for Pd-HNC1, 4.5 for
Pd-HNC2, 3.5 for Pd-HNC5, and 2.3 for Pd-HNC10 (Table
S2). That is, for the Pd-HNC series, the dominant species is
Pd atomically dispersed within the HNC matrix. For

Figure 3. (a) High-resolution XPS spectra of the Pd 3d electrons of the Pd-HNC series and PdNP/HNC. (b) High-resolution XPS spectra of the
C 1s (upper) and N 1s (bottom) electrons of HNC. (c) High-resolution XPS spectra of O 1s electrons of HNC and Pd-HNC10. The red dashed
line indicates the binding energy of the O 1s electrons in Pd−O. Solid curves are experimental data, and shaded peaks are deconvolution fits.

Figure 4. (a) Pd K-edge normalized XANES profiles of Pd-HNC10, Pd-HNC2, and Pd foil. Fourier transform EXAFS spectra of (b) Pd-HNC10, (c)
Pd-HNC2, and (d) Pd foil. Symbols are experimental data, and solid curves are the fits.
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comparison, the Pd2+:Pd0 ratio is only 0.77 in PdNP/HNC,
suggesting that nanoparticles are the major product together
with a small number of atomic Pd species. Furthermore, in
conjunction with the total Pd content obtained from ICP-OES
measurements (Table S1), one can see that Pd-HNC10
possessed the highest loading of atomic Pd2+ species (5.42
wt %), which is drastically higher than those of Pd SACs
reported in the literature (Table S3).
The C 1s and N 1s spectra of the HNC sample are shown in

Figure 3b. In the C 1s spectrum, the major component is sp2-
hybridized C, which accounts for ca. 77 at. % of the sample,
indicating effective carbonization of the ZIF-8 precursor by
pyrolysis. In the N 1s spectrum, deconvolution yields four
peaks at 398.5 eV for pyridinic N, 400.0 eV for pyrrolic N,
401.0 eV for graphitic N, and 402.8 eV for oxidized N; their
contents are 4.63, 1.49, 1.58, and 1.40 at. %, respectively,
corresponding to a total nitrogen dopant concentration of ca.
9.1 at. %. In the Pd-HNC samples, the Pd2+ species is most
likely coordinated to the pyrrolic/pyridinic N. This argument
is supported, in part, by the observation that no Pd−O peak
(529 eV, red dashed line) can be resolved in the O 1s spectra
(Figure 3c and Figure S9). However, it is difficult to resolve
Pd−N in the N 1s spectra because the binding energy is close
to those of pyrrolic/pyridinic N.22

Such structural details can be resolved in XAS measure-
ments. Figure 4a depicts the Pd K-edge X-ray absorption near-
edge structure (XANES) spectra of Pd-HNC10 and Pd-HNC2,
with a Pd foil as the reference. One can see that Pd-HNC10 and
Pd-HNC2 display very similar XANES profiles, suggesting
similar Pd electronic environments. Yet the absorption edge
can be seen to appear at a higher energy than that of the Pd
foil, along with a higher peak intensity for the first peak

following the edge, consistent with the existence of positively
charged Pd species in the Pd-HNC samples, which was
evidenced in TEM and XPS measurements (Figures 2 and 3).
Furthermore, the flat postedge feature of Pd-HNC10 and Pd-
HNC2 within the range of 24370−24385 eV can be attributed
to the combined contributions of Pd atomic species (which
display a peak-like feature) and Pd nanoparticles (which
display a valley-like feature).33,66 Moreover, the postedge
intensity of Pd-HNC10 (red curve) is slightly higher than that
of Pd-HNC2(blue curve), in good agreement with the higher
concentration of Pd2+ species in Pd-HNC10, as determined by
XPS measurements (Table S2).
Further structural insights were obtained from analysis of the

EXAFS spectra. From the Fourier transform EXAFS spectra in
Figure 4b−d, one can see that the Pd foil displays a major peak
at 2.54 Å arising from the Pd−Pd bond.67 This peak is also
visible in both Pd-HNC10 and Pd-HNC2, consistent with the
formation of Pd nanoparticles in the samples; however, a more
prominent peak can be identified below 2 Å that most likely
arose from Pd−O and/or Pd−N bonds with the carbon
support.68 Yet, as mentioned earlier, in the XPS measurements
of the Pd 3d and O 1s electrons of Pd-HNC10 and Pd-HNC2
(Figure 3a,c and Figure S9), no Pd−O species was found,
indicating that this peak most likely arose from a Pd−N
bonding interaction. Consistent results were obtained in
EXAFS measurements, where no Pd−Pd bonds from Pd−
O−Pd at ca. 3.0 Å can be resolved,33,69 indicating the absence
of PdOx nanoclusters in the samples. From fitting of the
spectral data (Figure 4b−d), the bond length can be calculated
to be 2.004 Å for Pd−N and 2.797 Å for Pd−Pd in Pd-HNC10
(note that the peak positions may deviate from the true bond
lengths due to the Fourier transform process, and EXAFS

Figure 5. ORR performance of the Pd-HNC series in oxygen-saturated 0.1 M KOH. (a) Linear sweep voltammograms (LSVs) of Pd-HNC
nanocomposites and control samples of HNC, PdNP/HNC, and Pt/C at the rotation rate of 1600 rpm. (b) The corresponding electron-transfer
number (n, left y-axis), yield of H2O2 (%, right y-axis), and (c) Tafel plots with the slopes shown in mV dec−1. (d) Poisoning test of Pd-HNC10 with
EDTA and KSCN treatments. (e) Stability test of Pd-HNC10 for 5000 cycles in N2-saturated 0.1 M KOH. Inset is the corresponding cyclic
voltammograms at the scan rate of 50 mV s−1 before and after the stability test. (f) Comparison of Eonset and E1/2 of the Pd-HNC series with those
of HNC, PdNP/HNC, and Pt/C.
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fitting allows for the actual bond lengths in the samples to be
calculated). The latter is slightly longer than that (2.741 Å) of
the Pd foil. Yet the corresponding coordination numbers (CN)
were found to be 3.4 for Pd−N and 2.2 for Pd−Pd in Pd-
HNC10. One can see that the latter is markedly smaller than
that (12) of the Pd foil. This is because Pd single atoms are the
predominant species in the Pd-HNC10 sample.56 Similar CN
and bond lengths (Table S4) were obtained for Pd-HNC2,
suggesting a very similar bonding configuration of atomic Pd in
the Pd-HNC samples, which is most likely in the form of
PdN3−4.
The ORR activity of the obtained samples was then assessed

and compared by RRDE measurements in O2-saturated 0.1 M
KOH at the rotation rate of 1600 rpm and potential sweep rate
of 10 mV s−1. From the linear sweep voltammograms (LSV) in
Figure 5a, all Pd-HNC samples can be seen to exhibit
apparently enhanced electrocatalytic activity toward ORR, as
compared to HNC alone, and the performance increases with
increasing Pd loading in the sample. That is, Pd-HNC10 stood
out as the best ORR catalysts among the series, within the
present experimental context. For instance, Pd-HNC1 ex-
hibited Eonset = +0.946 V and E1/2 = +0.808 V, over 100 mV
better than HNC alone, and both Eonset and E1/2 further
increased to +0.958 and +0.846 V for Pd-HNC2, +0.994 and
+0.889 V for Pd-HNC5, and +1.00 and +0.898 V for Pd-
HNC10. For comparison, the Eonset and E1/2 of the PdNP/
HNC sample can be identified at +0.975 and +0.853 V,
respectively, comparable to the performance of Pd-HNC2
despite a higher Pd content (Table S1), suggesting that
atomic Pd species in the Pd-HNC samples made dominant
contributions to the ORR activity, with minor contributions
from the nanoparticles. Notably, one can see that the Pd-
HNC10 even outperformed commercial 20 wt % Pt/C (Eonset =
+0.996 V, E1/2 = +0.857 V) and is also superior to leading Pd-
based ORR catalysts reported recently in the literature (Table
S5).
To further analyze the ORR kinetics, the number of electron

transfers (n) was estimated by = +n i
i i N

4
/

D

D R
, where iR and iD

are the ring current and disk current, respectively, and N is the
collection efficiency of the ring electrode (0.40, Figure S10).
From Figure 5b, one can see that the n number of the Pd-
HNC10 sample is over 3.97 at +0.85 V, even higher than that of
Pt/C (3.84), indicating high selectivity toward the four-
electron pathway of oxygen reduction. The Pd-HNC10 also
showed a very low H2O2% yield of 1.1% at +0.85 V, which was

calculated by = +H O % i N
i i N2 2
200 /

/
R

D R
, much lower than that of Pt/

C (7.6%). In the Tafel plots (Figure 5c), Pd-HNC10 exhibited
the smallest slope of 65.3 mV dec−1, in comparison to 76.9 mV
dec−1 for PdNP/HNC, 83.5 mV dec−1 for Pd-HNC2, and 82.4
mV dec−1 for Pt/C, implying efficient electron transfer to O2
and splitting of the O−O bonds.70

The ORR activity of the Pd-HNC samples in acidic media
was also assessed in O2-saturated 0.1 M HClO4 at the sweep
rate of 10 mV s−1 and the rotation rate of 1600 rpm (Figure
S11). The Pd-HNC10 again showed the best activity among the
series of samples with an Eonset of +0.912 V and an E1/2 of
+0.792 V.
To further distinguish the contributions of Pd nanoparticles

and Pd atomic species to the ORR activity, electrochemical
tests were performed in the presence of KSCN and EDTA as
the poisoning agents. From Figure 5d, one can see that when

the Pd-HNC10 sample was treated with 10 mM EDTA in the
0.1 M KOH solution, the E1/2 shifted negatively by 20 mV and
the limiting current decreased by 8%. Yet upon the addition of
10 mM KSCN into the electrolyte, the E1/2 shifted negatively
by more than 200 mV and the limiting current diminished by
over 1/3, and the overall performance resembled that of HNC
alone. Note that SCN− readily adsorbed to and blocked both
Pd nanoparticles and Pd−N sites, whereas EDTA poisoned
predominantly the Pd−N species (Figure S12). The different
poisoning effects by KSCN and EDTA suggest that both Pd
nanoparticles and Pd−N moieties contributed to the ORR
activity, with Pd−N being the dominant contributor.
The long-term durability of the Pd-HNC sample was then

evaluated by prolonged potential cycling between +0.65 and
+1.05 V at the potential sweep rate of 100 mV s−1. As shown in
Figure 5e, after 5000 cycles, the ORR activity of Pd-HNC10
remained virtually invariant. Interestingly, from the cyclic
voltammograms of Pd-HNC10 before and after 5000 potential
cycles (inset to Figure 5e), one can see that the cathodic peak
of PdOx reduction became weakened after the stability test,
indicating a partial loss of metallic palladium (mostly from the
nanoparticles); yet the ORR activity was almost unaffected,
further confirming that indeed the ORR activity was largely
due to the Pd−N atomic species.
The contributions of Pd nanoparticles and single atoms to

the ORR activity can also be differentiated by correlation of the
ORR activity with the concentration of the various Pd species
in the Pd-HNC samples. One can see from Figure 6 that if the

activity was attributed to the total mass of Pd, the linear fit of
the kinetic current density (i.e., specific activity, Jk) at +0.85 V
vs the total mass of Pd (green line) is rather poor with an R2

coefficient of only 0.777. Because results of XPS measurements
showed the formation of both metallic Pd0 and atomic Pd2+,
their contributions to the ORR activity were then analyzed and
differentiated. When Pd0 was assumed as the contributing
source of the ORR activity, the correlation of Jk with the Pd0

mass demonstrated a scatter plot with an even worse
correlation coefficient of R2 = 0.379. By contrast, when the

Figure 6. Linear correlation between the ORR kinetic current density
(Jk at +0.85 V) and the mass of Pd0, Pd2+, or Pd0 + Pd2+ of Pd-HNC.
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ORR activity was correlated to the mass of the Pd2+ species
(Pd−N active sites), linear regression of the scatter plot
showed a better R2 of 0.826, suggesting that Pd2+ is indeed
more likely the dominating species responsible for the ORR
activity. This is consistent with results from the ORR
poisoning test.

■ CONCLUSIONS
In this study, a facile procedure based on wet impregnation was
developed, whereby Pd was atomically dispersed and enriched
onto the surface of N-doped porous carbon cages derived from
hollow ZIF-8 precursors. This was manifested in high-
resolution TEM, XPS, and XAS measurements, where Pd
was mostly involved in the formation of PdNx moieties.
Electrochemically, the obtained Pd-HNC samples exhibited
markedly enhanced ORR activity in alkaline media as
compared to the nanoparticle counterparts and the carbon
cages alone, and the Pd-HNC10 sample, which corresponded to
a saturated Pd loading, even outperformed Pt/C and leading
Pd-based catalysts in the literature. The remarkable ORR
performance was ascribed mostly to the atomic Pd species in
the samples, which were predominantly enriched on the
carbon support surface. Results from this study highlight the
significance of metal single atom catalysts and their surface
enrichments in ORR electrocatalysis. In addition, such a
unique structural scaffold can be exploited for the embedment
of a wide range of metal centers for diverse applications.
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