ORIGINAL PAPER

Nano-p-n junction heterostructures enhanced TiO₂ nanobelts biosensing electrode

Jingjie Cui · Shaowei Chen · Hong Liu · Zhen Huang

Received: 27 December 2013 / Revised: 15 May 2014 / Accepted: 26 May 2014 / Published online: 8 June 2014 © Springer-Verlag Berlin Heidelberg 2014

Abstract 6-Phosphate aminopurine (⁶PA), a purine analog, is usually used in clinical anticancer treatment and biochemical research. Up to now, to the best of our knowledge, no literature about the electrochemical behaviors of ⁶PA has been reported. In this study, nano-p-n junction heterostructures based on TiO₂ nanobelts were produced by the assembly of p-type semiconducting NiO nanoparticles onto the n-type surface-coarsened TiO₂ nanobelts. The electrochemical behaviors of ⁶PA were investigated by different voltammetric techniques in a phosphate buffer solution of pH 7.4 using the heterostructures as the sensing electrode. Compared with single-phase TiO₂ nanobelt electrodes, the resulting chemically modified electrodes exhibited higher surface accumulation ability and enhanced electrocatalytic activities in the oxidation for ⁶PA, with an irreversible oxidation peak at +0.91 V. It is proposed that the nano-p-n junction heterostructures played an important role in the enhancement of charge transport in the sensing electrodes. The results suggest that the nanoengineered TiO₂ nanobelts might be a promising candidate for biosensing applications of nucleic acid drugs that will

J. Cui

College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

J. Cui $(\boxtimes) \cdot$ H. Liu (\boxtimes)

State Key Laboratory of Crystal Materials, Center of Bio & Micro/ Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, People's Republic of China e-mail: cuijingjie@hdu.edu.cn e-mail: hongliu@sdu.edu.cn

S. Chen

Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA

Z. Huang

Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA

be of significance to diagnostic medicine and molecular biology research.

Keywords TiO_2 nanobelts $\cdot NiO \cdot Nano-p-n$ junction heterostructure $\cdot 6$ -Phosphate aminopurine \cdot Charge transport

Introduction

For electrochemical biosensors, catalytic activity is a critical element in the selection and development of the sensing materials [1]. High-purity anatase TiO₂, with a high percentage of reactive {001} facets, has been found to exhibit the best catalytic activity among the four polymorphs of TiO₂ [2–6], which is generally desired for (bio)sensing applications. However, anatase TiO₂ is a semiconductor with a wide band gap (3.2 eV), and the band gap usually increases with decreasing size of the anatase domains [7], which strongly influences the charge transfer dynamics due to its increasing resistance. Thus, nanoscale engineering represents an effective route to the enhancement of the charge transport dynamics involved, such as the formation of nanoscale heterostructures with a different semiconductor [8].

Recently, we showed that TiO_2 nanobelts might serve as active sensing materials for electrochemical determination of purine bases and the surface-coarsened TiO₂ nanobelts exhibited improved sensitivity and selectivity as compared to the as-produced ones [9, 10]. Additionally, we found that interface heterostructure could enhance TiO₂ nanobelts' performance [11]. In the present study, we extend the investigation of coarsened TiO₂ nanobelts with nano-p–n junctions to electrocatalytic oxidation of 6-phosphate aminopurine (⁶PA) by assembling NiO nanoparticles onto the TiO₂ nanobelts. Note that TiO₂ is an *n*-type semiconductor due to oxygen deficiency or excess of titanium and nickel oxide (NiO) is an antiferromagnetic p-type semiconductor with a direct forbidden band gap of 3.8 eV [12–14]. A p–n junction is thus formed when they are in intimate contact, which may be exploited for efficient charge transport.

⁶PA, also known as adenine phosphate, is an integral part of nucleic acids. ⁶PA participates in the synthesis of RNA and DNA in vivo. It can effectively stimulate interleukin proliferation, increasing white blood cells, and can be used in leukopenia from chemotherapy, radiation therapy, and benzene poisoning. So, ⁶PA is usually used in clinical anticancer treatment and biochemical research. However, to the best of our knowledge, the electrochemical analysis of ⁶PA has remained largely unexplored. Many characterization methods have been used in drug analysis, including luminescence [15], UV-vis spectroscopy [16], mass spectrometry [17], fluorescence [18], NMR [19], and electrochemical analysis [20]. Among these techniques, electrochemical detection has several advantages, such as fast response, high sensitivity, miniaturized analytical devices, in-site environmental monitoring, and analysis of very small sample volumes [21]. It is important to further develop rapid, sensitive, and simple methods for the determination of drugs.

Additionally, it should be noted that there is virtually no difference in pH between tumors and normal tissues. When eukaryotic cells clamp cytoplasmic pH at 7.0–7.4 by ion transport mechanisms and a high buffering capacity of the cytosol, the electrochemical determination of drugs must be strictly regulated in aqueous solutions within a physiological pH range from 7.0 to 7.4 [22, 23].

In this work, nano-p–n junction heterostructures based on TiO_2 nanobelts were produced by the assembly of p-type semiconducting NiO nanoparticles onto the n-type surface-coarsened TiO_2 nanobelts. The NiO nanoparticle/surface-coarsened TiO_2 nanobelt heterostructures (NTNs) were employed as the sensing materials that exhibited apparent electrocatalytic activity in the oxidation of ⁶PA. Compared with the surface-coarsened TiO_2 nanobelts (STNs) alone, the heterostructured electrode possessed more efficient charge transfer in the oxidation of ⁶PA. In particular, it is anticipated that the results reported in a physiological PBS of pH 7.4 herein might offer some useful information for anticancer research by electrochemical techniques, which is of particular interest for developing electrochemical sensors in physiological media.

Experimental section

Materials

Medicines Corporation Ltd. ⁶PA was obtained from Aladdin (Shanghai, China). Conductive adhesive was purchased from China Shenzhen Capiton Sci-Technology Co., Ltd. Ultrapurified (Millipore) water was used throughout this study. All reagents were of analytical grade.

Preparation of TiO₂ nanobelts and NiO/TiO₂ p-n junction heterostructures

Titanate nanobelts were synthesized by a hydrothermal process in a concentrated NaOH aqueous solution. Commercial titania powders (Degussa Co., P-25, a mixture of anatase and rutile in a ratio of 3:1) were used as the precursor. Briefly, 0.1 g of the P-25 precursor was mixed with 20 mL of a 10 M NaOH aqueous solution, followed by a hydrothermal treatment at 180 °C in a 25-mL Teflon-lined autoclave for 72 h. The treated powders were washed thoroughly with deionized water, followed by a filtration and drying process, affording sodium titanate nanobelts, which were then immersed in a 0.1 M HCl aqueous solution for 24 h and washed thoroughly with water to produce hydrogen titanate nanobelts. The hydrogen titanate nanobelts obtained were dispersed into 20 mL of 0.02 M H₂SO₄ aqueous solution with the help of magnetic stirring for half an hour. The mixed solution was then transferred into a Teflon-lined stainless steel autoclave up to 80 % of the total volume, heated at 100 °C for 12 h, and cooled to room temperature in air. The wet products were then thoroughly washed with deionized water and then dried at 70 °C to obtain surface-coarsened hydrogen titanate nanobelts (H₂Ti₃O₇). These nanobelts were divided into two portions. One part was thermally annealed at 600 °C for 2 h, leading to the formation of STNs. The other part was dispersed into the Ni(NO₃)₂·6H₂O solution (Ti and Ni in a mole ratio of 9:5) and then soaked for 5 h. Subsequently, the soaked samples were carefully collected from solution and dried in an oven at

Fig. 1 X-ray diffraction (XRD) patterns of a surface-coarsened TiO₂ nanobelts and b nano-p–n junction heterostructure NiO/TiO₂ nanobelts

Fig. 2 XPS curves of nano-p–n junction heterostructure NiO/ TiO₂ nanobelts: a XPS survey spectrum and high-resolution spectra of b Ti2p and c Ni2p

110 °C overnight. Finally, the dried samples were heat-treated at 600 °C for 2 h to obtain NiO/TiO₂ p–n junction heterostructures (NTNs).

Preparation of TiO₂ nanobelt-modified electrodes and electrochemical studies

Characterization

X-ray powder diffraction (XRD) patterns were obtained on a Bruker D8 Advance powder X-ray diffractometer with Cu-Ka radiation (λ =0.15406 nm). X-ray photoelectron spectroscopy (XPS) measurements were performed on a Kratos Axis Ultra DLD (delay line detector) spectrometer equipped with a monochromatic Al Ka X-ray source (1,486.6 eV). All binding energies were referenced to the C1s peak at 284.8 eV of the surface adventitious carbon. High-resolution transmission electron microscope (HRTEM) images were obtained with a JEOL JEM 2100 microscope. All experiments were performed at room temperature. A glassy carbon electrode (3 mm in diameter) was polished with 0.05 μ m α -Al₂O₃ suspensions until a mirror surface was obtained, and rinsed extensively with anhydrous ethanol and deionized water. The electrode was then electrochemically cleaned in 0.5 M H₂SO₄ by cycling potentials between -0.3 and +1.8 V at 100 mV s⁻¹ until a steady cyclic voltammogram was produced. A conductive adhesive (CA) was drop-cast onto the cleaned glassy carbon electrode (GCE) surface, onto which 3 μ L of an ethanolic suspension of TiO₂ nanobelts (0.5 mg mL⁻¹) was added in a dropwise fashion. After drying, the resulting electrodes were denoted as STNs/CA/GCE or NTNs/CA/GCE. Electrochemical measurements were performed in a three-electrode configuration. The TiO₂ nanobelt-modified electrodes prepared above were used as

Fig. 3 Microstructure of nano-p– n junction heterostructure NiO/ TiO₂ nanobelts: **a**, **b** TEM image under different magnifications, **c** HRTEM lattice fringe images, and **d** electron diffraction images

the working electrode. A Pt foil acted as the auxiliary electrode. All potentials were referred to an Ag/AgCl/KCl saturated reference electrode. All analyte solutions were prepared in 0.1 M phosphate-buffered saline (PBS) (pH 7.4). Voltammetric data were acquired with a CHI 660C electrochemical workstation.

Results and discussion

Characterization of nanobelt structure and composition

To characterize the crystal structure of the samples, XRD measurements were carried out on STNs, and NiO/TiO₂ p-n

Fig. 5 Cyclic voltammograms (CV) for TiO₂ nanobelt-modified electrodes in 0.1 M PBS at pH 7.4 without and with 0.08 mM 6-phosphate aminopurine (⁶PA): nano-p–n junction heterostructure NiO/TiO₂ nanobelt electrode in 0.1 M PBS at pH 7.4 without (*a*) and with (*b*) 0.08 mM ⁶PA; surface-coarsened TiO₂ nanobelt electrode in 0.1 M PBS at pH 7.4 with ⁶PA (*c*); molecular structure of ⁶PA (*inset*). Sweep rate, 100 mVs⁻¹

junction heterostructures (NTNs). For the STNs (Fig. 1a), only anatase features were observed [9]. For the NTNs (Fig. 1b), the diffraction peaks at 37.15° , 43.10° , and 62.88° can be indexed to the (111), (200), and (220) lattice planes of cubic NiO phase (JCPDS Card 78-429), respectively. The average size of the NiO nanoparticles calculated from the width of the (200) reflection with the aid of the Scherrer equation was found to be around 20 nm. Compared to the diffraction peaks of STNs, the peaks of NTNs are broader. This is apparently due to both the smaller size of NiO and the lattice mismatch between the NiO nanoparticles and the TiO₂ nanobelts [24]. The latter causes additional defects in the interfacial region between the TiO₂ nanobelts and the NiO nanoparticles, which may enhance the surface activity of TiO₂ nanobelt materials.

To investigate the elemental composition of NiO/TiO₂ p-n junction heterostructures (NTNs), XPS was conducted. As

Fig. 6 Square wave voltammograms (SWV) for TiO₂ nanobelt-modified electrodes in 0.1 M PBS at pH 7.4 without (*a*) and with 0.08 mM 6-phosphate aminopurine (⁶PA): surface-coarsened TiO₂ nanobelt electrode (*b*) and nano-p–n junction heterostructure NiO/TiO₂ nanobelt electrode (*c*). Sweep rate, 100 mV s⁻¹

Scheme 1 The p–n junction band structure and schematic diagram of the holes driven toward solution to electrooxide ⁶PA by the electric field (*CB* conduction band, *VB* valence band)

shown in Fig. 2a, there are Ti, Ni, C, and O elements in the XPS spectrum. The carbon element at 284.7 eV originated from the adhesive tape used in the XPS test. Panels b and c of Fig. 2 show the high-resolution XPS spectra of the Ti2p and Ni2p regions, respectively. In the high-resolution XPS spectrum of Ti2p (Fig. 2b), the binding energies of Ti 2p3/2 and 2p1/2 were centered at 458.6 and 465.2 eV, respectively, revealing that the titanium elements are in the +4 oxidation state. In the high-resolution XPS spectrum of Ni2p (Fig. 2c), the binding energies of Ni 2p3/2 and 2p1/2 were centered at 855.6 and 873.1 eV, respectively, revealing that the nickel elements are in the +2 oxidation state [25].

High-resolution transmission electron microscopy (HRTEM) examination (Fig. 3) provides more detailed information about the morphology and microstructure of the NiO/ TiO₂ p–n junction heterostructures (NTNs). Most of the NiO nanoparticles are small nanocrystals uniformly distributed on the outermost surface of the TiO₂ nanobelts, resulting in a welldefined nano-p–n junction heterostructure on the TiO₂ nanobelt surface (Fig. 3a). The nanoparticle diameters estimated from the TEM image are about 20 nm (Fig. 3b), which is consistent with the XRD pattern calculation (Fig. 1). The lattice fringes of the NTNs can be easily seen (Fig. 3c). The distance of the aligned lattice fringe spacing was measured to be 0.39 and 0.23 nm, which is consistent with the d101 spacing of anatase TiO₂ and the d200 spacing of cubic NiO. The anatase phase and cubic NiO phase are also confirmed by analyzing the electron diffraction (ED) pattern (Fig. 3d). HRTEM micrograph shows a large amount of surface defects and lattice distortion for the NTNs. This is consistent with the XRD result. It is expected that the NTNs have a high interfacial activity.

Electrochemical oxidation of 6-phosphate aminopurine

Figure 4 shows the cyclic voltammograms (CV) for the conductive adhesive (CA, curve 1), surface-coarsened TiO₂ nanobelts (STNs, curve 2), and NiO/TiO₂ p–n junction heterostructure (NTNs, curve 3) electrodes in a blank PBS (pH 7.4) supporting electrolyte. From Fig. 4a, in the potential window ranging from -0.9 to +1.8 V, no reduction peaks for the CA electrode (see curve 1) were observed, whereas an irreversible reduction peak emerged at about -0.5 V for both the STN and NTN electrodes, which may be ascribed to the electroreduction of Ti ion [26]. The fact that the voltammetric peak at NTNs/CA/GCE is much sharper and stronger than that at STNs/CA/GCE suggests that the electron transfer kinetics and electroactivity were markedly enhanced by the formation of nano-p–n junctions on the TiO₂ nanobelt surface with NiO nanoparticles [27].

The electrochemical activity of ⁶PA was then investigated by the TiO₂ nanobelt-modified electrodes. Figure 5 shows the cyclic voltammograms of the TiO2 nanobelt-modified electrodes in 0.1 M PBS (pH 7.4) in the absence and presence of 0.08 mM ⁶PA. One can see that with the addition of 0.08 mM ⁶PA, a new irreversible oxidation peak appeared at +0.91 V for both the NiO/TiO2 p-n junction heterostructurets (NTNs/CA/GCE) and surface-coarsened TiO₂ nanobelt electrode (STNs/CA/GCE). The irreversible oxidation peak was not observed in a blank PBS supporting electrolyte. Different species of analytes give voltammetric signals at distinctly different potentials [28]. So, the irreversible oxidation peak at +0.91 V can be ascribed to the electrooxidation of ⁶PA. From Fig. 5, it can be seen that the oxidation peak at NTNs/CA/GCE is sharper than that at STNs/CA/GCE, indicating faster electron transfer kinetics at the NTNs/CA/GCE electrode for ⁶PA oxidation. Similar features were observed by square wave voltammetry (SWV) measurements.

Figure 6 shows the SWVs of varied chemically modified electrodes in the presence of $0.08 \text{ mM}^{6}\text{PA}$. It can be seen that at the TiO₂ nanobelt-modified electrodes, the control

Scheme 2 The reaction mechanism for ⁶PA: A 9H-purine-6-amine phosphate (⁶PA), B 6-amino-3,9-dihydro-2H-purine-2-one phosphate, C 6-amino-7,9-dihydro-2H-purine-2,8(3H)-dione phosphate, D 6-amino-2H-purine-2,8(3H)-dione phosphate

Fig. 7 Cyclic voltammograms at different scan rates (a); plot of peak current vs the scan rate (b); plot of E_p vs $\ln v$ (c) for 0.08 mM ⁶PA at the surface-coarsened TiO₂ nanobelt electrode in 0.1 M PBS (pH 7.4)

experiment in a blank PBS supporting electrolyte manifested only a featureless voltammetric profile between +0.35 and + 1.4 V (curve a). By contrast, at the TiO₂ nanobelt-modified (curve b, c) electrodes, an oxidation peak appeared at +0.91 V in the presence of 0.08 mM ⁶PA. In comparison with the voltammetric responses of the STNs/CA/GCE (curves b), the peak current of the NTNs/CA/GCE (curves c) is much higher and the oxidation peak is sharper, indicating ⁶PA possessed faster electron transfer kinetics and stronger voltammetric response at the NTNs/CA/GCE. Obviously, the nano-p-n heterostructures with enhanced (001) facets and the uniform distribution of the NiO nanoparticles play important roles in the significant improvement of the ET kinetics and the sensitivity of the TiO2 nanobelt-modified electrodes [27]. For nano-p-n junction NiO-TiO₂ nanobelt heterostructures, an internal field is generated at the interface of the NiO-TiO₂ nanobelts, where the p-type NiO regions are negatively charged and the n-type TiO₂ regions are positively charged. Therefore, the holes flow toward the negative side, that is, the p-type NiO regions. When voltammetry sweep positively, the holes are biased toward the p-type NiO regions by the internal field. Then, the holes are driven toward solution to electrooxide ⁶PA by the electric field (Scheme 1). The charge transport kinetics of TiO2 nanobelt-modified electrodes was enhanced in this precess. It is known that holes are strong oxidants, thus facilitating the electrooxidation of ⁶PA.

Electrochemical oxidation mechanism and kinetics of 6-phosphate aminopurine at the TiO₂ nanobelt electrodes

⁶PA, also known as adenine phosphate, contains onemolecular adenine and one-molecular phosphate. The chemical structure of ⁶PA is shown in the Fig. 5 inset. The phosphate and amino moieties are good anchoring groups to immobilize ⁶PA onto the p–n junction heterostructuret oxide surface. Obviously, its electroactivity arises from its adenine structure [9]. The relevant mechanism in electrooxidation of ⁶PA may be proposed as follows (Scheme 2).

J Solid State Electrochem (2014) 18:2693-2699

Additionally, the electrochemical kinetics of ⁶PA at the TiO_2 nanobelt (STNs or NTNs) modified electrode was then examined by cyclic voltammetric measurements at different potential sweep rates (Figs. 7 and 8). It can be seen that the oxidation peak currents of ⁶PA increase linearly with the potential scan rate at the modified electrode. The linear regression equations and correlation coefficient can be seen in Figs. 7b and 8b. These phenomena indicated that the process of electrode was controlled by surface adsorption.

For an irreversible surface process, where adsorbed species are oxidized, the relationship between peak current (i_p) and surface coverage (Γ) is [29]

$$i_{\rm p} = n(1-\alpha)n_{\alpha}AF^2 v\Gamma/2.718RT \tag{1}$$

where v is the scan rate, R the gas constant (8.314 J mol⁻¹ K⁻¹), T the absolute temperature (T=298 K), F the Faraday constant (96,485 C mol⁻¹), A the geometrical area of the working electrode (A=0.07 cm²), n the total number of electrons involved in the oxidation of ⁶PA (⁶PA consists of one adenine and one phosphate; here, n may be thought as 6 due to its electroactivity from the adenine group.) [30, 31], n_{α} the number of electrons involved in the rate-determining step, and α the electron transfer coefficient, which can be determined by the linear dependence of peak potential $E_{\rm P}$ with the logarithm of the potential scan rate v (Figs. 7c and 8c) [29, 32], according to

$$E_{\rm pa} = {\rm const.} + [0.02569/(1-\alpha)n_{\alpha}]\ln\nu\,(298\ {\rm K}) \tag{2}$$

Fig. 8 Cyclic voltammograms at different scan rates (a); plot of peak current vs the scan rate (b); plot of E_p vs lnv (c) for 0.08 mM ⁶PA at the nano-p–n junction heterostructure NiO/TiO₂ nanobelt electrode in 0.1 M PBS (pH 7.4)

In the potential range examined, the plots of E_p vs ln ν were linear. The equation of the straight lines is shown in Figs. 7c and 8c. The ⁶PA at the STNs/CA/GCE and the NTNs/CA/ GCE, $(1-\alpha)n_{\alpha}$, were estimated as 1.9915 and 1.7242, respectively. Thus, if a flat surface is assumed, the average surface concentration (I) of ⁶PA on the surfaces of the STNs/CA/ GCE and the NTNs/CA/GCE are estimated to be about 1.934×10^{-6} and 2.587×10^{-6} mol/m², respectively. These results indicate that the NiO/TiO₂ p–n junction heterostructuret nanobelts (NTNs) have higher surface accumulation ability for all detected species because the heterostructures may increase surface adsorption active sites.

Conclusions

Nano-p–n junction heterostructures based on TiO₂ nanobelts (NTNs) have been produced by assembling p-type semiconducting NiO nanoparticles onto the n-type surface-coarsened TiO₂ nanobelts through a chemical deposition/decomposition process. The electrochemical results indicated that the nanobelt-functionalized electrodes had a markedly enhanced electrocatalytic activity and sensitivity in the oxidation of ⁶PA. The enhanced performance is most likely due to the nano-p–n junctions and the uniform distribution of the NiO nanoparticles on the TiO₂ nanobelt surface that effectively improved charge transport at the interface. These results suggest that nano-p–n junction heterostructure NiO/TiO₂ nanobelts may serve as promising active materials in the electrochemical oxidation of ⁶PA, which will be of significance to modern biochemical and biomedical research by the electrochemical technology.

Acknowledgments This research was supported by NSFC (grant nos. 51102152, 50925205, and 51172132), Young Academic Leaders' Climbing Program of Zhejiang Province (GK130204217002/001), China Science Foundation for Postdoctor (10000071311003), and Independent Innovation Foundation of Hangzhou Dianzi University (KYS195612009).

References

1. Li XC, He GH, Han Y, Xue Q, Wu XM, Yang SR (2012) J Colloid Interface Sci 387:39–46

- 2. Zhang J, Li LP, Li GS (2012) Phys Chem Chem Phys 14: 11167–11177
- 3. Banfield JF, Veblen DR (1992) Am Mineral 77:545-557
- Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Nature 453:638–642
- 5. Wang W, Ni YR, Lu CH, Xu ZZ (2012) RSC Adv 2:8286-8288
- Barbora L, Marketa Z, Ladislav K, Alison C, Paul L, Zhang W, Liu B, Pavel K, Elham G, Jacques EM, Michael G (2012) J Solid State Electrochem 16:2993–3001
- 7. Chen XB, Mao SS (2007) Chem Rev 107:2891–2959
- Wu R, Chen XH, Hu JQ (2012) J Solid State Electrochem 16: 1975–1982
- Cui JJ, Sun DH, Zhou WJ, Liu H, Hu PG, Ren N, Qin HM, Huang Z, Lin JJ, Ma HY (2011) Phys Chem Chem Phys 13:9232–9237
- 10. Cui JJ, Sun DH, Chen SW, Zhou WJ, Hu PG, Liu H, Huang Z (2011) J Mater Chem 21:10633–10636
- Zhou WJ, Gai LG, Hu PG, Cui JJ, Liu XY, Wang DZ, Li GH, Jiang HD, Liu D, Liu H, Wang JY (2011) CrystEngComm 13: 6643–6649
- Lee CY, Chiang CM, Wang YH, Mac RH (2007) Sensors Actuators B 122:503–510
- Hotovy I, Rehacek V, Siciliano P, Caponec S, Spiess L (2002) Thin Solid Films 418:9–15
- Mattei G, Mazzoldi P, Post ML, Buso D, Guglielmi M, Martucci A (2007) Adv Mater 19:561–564
- 15. Li PP, Liu SP, Yan SG, Fan XQ, He YQ (2011) Colloids Surf A 392: 7–15
- 16. Park EK, Lee SB, Lee YM (2005) Biomaterials 26:1053-1061
- Hartinger CG, Ang WH, Casini A, Messori L, Keppler BK, Dyson PJ (2007) J Anal At Spectrom 22:960–967
- 18. Win KY, Feng SS (2005) Biomaterials 26:2713–2722
- Iwamoto M, Mukundan S Jr, Marzilli LG (1994) J Am Chem Soc 116:6238–6244
- El-Said WA, Yea CH, Kim H, Oh BK, Choia JW (2009) Biosens Bioelectron 24:1259–1265
- 21. Wang J (2002) Anal Chim Acta 469:63-71
- 22. Madshus IH (1988) Biochem J 250:1-8
- 23. Povsic TJ, Dervan PB (1989) J Am Chem Soc 111:3059-3061
- 24. Zhou XD, Huebner W (2001) Appl Phys Lett 79:3512-3514
- 25. Chen SF, Zhang SJ, Liu W, Zhao W (2008) J Hazard Mater 155: 320–326
- Tomčík P, Jenčušová P, Krajčíková M, Bustin D, Manová A, Čakrt M (2006) J Electroanal Chem 593:167–171
- Cui JJ, Ge YK, Chen SW, Liu H, Huang Z, Jiang HD, Chen J (2013) J Mater Chem B 1:2072–2077
- Nowicka AM, Zabost E, Donten M, Mazerska Z, Stojek Z (2007) Anal Bioanal Chem 389:1931–1940
- Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York
- de los Santos-Alvarez N, de los Santos-Alvarez P, Lobo-Castanon MJ, Lopez R, Miranda-Ordieres AJ, Tunon-Blanco P (2007) Electrochem Commun 9:1862–1866
- 31. Wang ZH, Xiao SF, Chen Y (2006) J Electroanal Chem 589:237-242
- 32. Laviron E (1974) J Electroanal Chem 52:355-393