Monolayer-Protected Cluster Growth Dynamics

Shaowei Chen, ${ }^{\dagger}$ Allen C. Templeton, and Royce W. Murray*
Kenan Laboratories of Chemistry, University of North Carolina, Chape Hill, North Carolina 27599-3290

Recei ved September 13, 1999. In Final Form: December 31, 1999

Abstract

With the objective of better understandingthe Brust synthesis reaction, this paper examines theevol ution of the core sizes of hexanethiol ate monol ayer-protected Au clusters (MPCs) in a typical synthesis reaction mixture, at time intervals over the course of 125 h . Transmission electron microscopy shows that the average MPC core diameter gradually increases over the first 60 h of reaction and then remains largely unchanged afterward at $\sim 3.0 \mathrm{~nm}$. Differential pulse voltammetry of purified MPC aliquots removed from the synthesis reaction exhibit quantized double-layer (QDL) charging peaks. QDL charging peaks have been previously shown to be a strong function of MPC core size and di spersity and reveal (i) the presence of several discernible coresizes in each sample and (ii) an increasein cluster capacitance ($\mathrm{C}_{\mathrm{cLu}}$) with longer reaction times, consistent with the electron microscopy results.

Introduction

Nanometer-sized metallicand semi conducting particles are an active research area today for a variety of reasons, including generating and understanding material sat the bulk/molecular interface that display interesting sizedependent optical, electronic, and physical properties. ${ }^{1}$ Keystones to research on nanoparticles are synthetic routes to produce them in a size-control lable manner. A facilesynthesis of nanoparticles composed of gold clusters coated with thiol ate monolayers (or monolayer-protected gold clusters, Au MPCs), introduced by Schiffrin and coworkers, ${ }^{2}$ has attracted extensive use. Au MPCs additionally exhibit stability in both solution and dry forms, allowing characterization using standard analytical approaches ${ }^{3}$ and, most importantly from the chemist's perspective, facilitatingsimplechemical transformations to introduce a wide variety of structural groups ${ }^{4}$ onto the nanoparticles.
The MPC synthesis reaction is a two-step process that leads to modestly pol ydisperse(in coresize) al kanethiolate protected Au clusters with average corediameters of 1.15.2 nm : 3,5

[^0]\[

$$
\begin{gather*}
\mathrm{AuCl}_{4}^{-} \text {(toluene) }+\mathrm{RSH} \rightarrow\left(-\mathrm{Au}^{\prime} \mathrm{SR}-\right)_{\mathrm{n}}(\text { polymer }) \tag{1}\\
\left(-\mathrm{Au}^{\prime} \mathrm{SR}-\right)_{\mathrm{n}}+\mathrm{BH}_{4}^{-} \rightarrow \mathrm{Au}_{\mathrm{x}}(\mathrm{SR})_{y} \tag{2}
\end{gather*}
$$
\]

For example, employinghexanethiol as RSH in a 3:1 thiol/ Au reactant ratioand chilling thereaction yields a solution of clusters with an average core diameter of 1.6 nm and average $\mathrm{Au}_{145}\left(\mathrm{~S}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right)_{50}$ composition. ${ }^{3}$ The behavior of reactions (1) and (2) is consistent with a nucleation-growth-passivation process; namely, larger thiol/gold mole ratios and fast addition of reductant producesmaller average MPC core sizes, $, 3,5$ and quenching the reaction at short times produces higher proportions of MPCs with very small core sizes ($<2 \mathrm{~nm}$). ${ }^{6}$
Besides these few significant observations, the details of the MPC synthesis reaction remain largely unexplored. In this paper, we address an important unexplored aspect of thesynthetic reaction, namely, the phenomenon of slow changes in cluster coresize that follow the active earliest stages of the synthetic reaction. An appreciation of the cluster growth mechanism and anneal ing effects may be useful in designing improved tactics to produce more monodisperse and larger quantities of very small (<1.5 nm diameter) MPCs. The successful procurement of these materials is, of course, critical to examining important size-dependent core properties free of averaging over a mixed population of different MPC core sizes. For al-kanethiolate-protected MPCs, the most interesting core attributes observed thus far are the onset of electrochemical and spectroscopic band gaps below about 100 atoms/coreand quantized double-layer (QDL) capacitance charging of theMPC cores in room-temperatureelectrolyte solutions. ${ }^{7}$
In the experiments described, we follow the core size and dispersity of the exexanethiolate-coated MPC materials produced over a 125 h course of reaction time, using the standard core size measurement method of transmission

[^1]electron miaroscopy (TEM) and the uniqueelectrochemical QDL charging response of MPC solutions. Theoretical simulations predict that thevoltagespacing between MPC QDL charging peaks should respond to changes in MPC core size and dispersity, ${ }^{7 c}$ and we inspect this here as a tool to follow MPC cluster growth. The combined TEM and double layer charging results show consistent evoIutionary features in terms of nanoparticle core size and cluster double layer capacitance ($\mathrm{C}_{\mathrm{cLu}}$) as a function of cluster growth time.

Experimental Section

Chemicals. $\mathrm{HAuCl}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}$ was prepared according to the literature. ${ }^{8} 1$-Hexanethiol (98%, Aldrich), toluene(M allinckrodt), tetraoctylammonium bromide (98%, Aldrich), tetrahexylammonium perchlorate (99.9\%, Fluka), acetonitrile (Fisher), and absol uteethanol (AAPER) wereused as received, without further purification. Water was purified by passing house-distilled water through a Barnstead Nanopure system ($>18 \mathrm{M} \Omega$).

MPC Synthesis. Hexanethiolate MPCs (C6 MPCs) were synthesized accordingtoa literature procedureknown to produce Au clusters with an averagecore of 145 atoms (1.6 nm diameter) covered with 48-50 protecting hexanethiolate chains. ${ }^{3}$ Specifically, a toluene solution containing a 3:1 ratio of hexanethiol to $\mathrm{AuCl}_{4}{ }^{-}$(thegol d complex was transferred from theaqueous phase by tetraoctylammonium bromide) was cooled to $0^{\circ} \mathrm{C}$ followed by addition of aqueous $\mathrm{BH}_{4}{ }^{-}$reductant; the deep red toluene layer immediately turned black, indicating MPC formation. The reaction was run on a scale such that ca. $15-20 \mathrm{~mL}$ samples of the MPC tol uene solution could be removed from the reaction solution at selected time intervals. Cluster growth in these samples was quenched by addition of a 10 -fold volume excess of absolute ethanol (precipitating the MPC product; precipitation was complete in ca. 3-5 min). E ach precipitated MPC product was isolated by filtering and washed with copious amounts of absolute ethanol, followed by ca. 150 mL of acetone. The MPCs prepared in the above manner wereclean of unreacted thiol and of dihexanedisulfide by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

TEM. TEM samples were prepared by casting a single drop of a $\sim 1 \mathrm{mg} / \mathrm{mL}$ duster solution in hexane onto standard carboncoated ($200-300 \AA$) F ormvar films on copper grids (200 mesh) and drying in air for at least 45 min . Phase-contrast images of the particles were obtained with a side-entry Phillips CM12 electron microscope operating at 120 keV . Three typical regions of each sample were obtained at either 430K or 580K magnification. Sizedistribution histograms of theAu cores were obtained fromat least two di gitized photographic enlargements usingScion Image Beta Release 2 (www.scioncorp.com).

Electrochemical Measurements. Electrochemical measurements were performed using a BAS 100B/W electrochemical workstation. The $0.06 \mathrm{~cm}^{2}$ Pt disk working el ectrodewas pol ished prior to each experiment with $0.5 \mu \mathrm{~m}$ diamond paste (Buehler) followed by rinsing with water, ethanol, and acetone. Pt coil counter and Ag quasi-reference (AgQRE) electrodes resided in the same cell compartment as the working electrode. The electrochemical solvent was a $2: 1$ toluene/ $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{v} / \mathrm{v})$ mixture containing ca. 0.1 mM hexanethiolate MPC and 0.05 M tetrahexylammonium perchlorate as the supporting electrolyte.

Results and Discussion

TEM. TEM has provided important size and shape information about alkanethiolate monolayer-protected

[^2]gold clusters. Whetten and co-workers ${ }^{6 a}$ combined highresolution TEM with Iaser desorption/ionization (LDI) mass spectrometry and theoretical modeling studies to predict a truncated octahedral morphology as the equilibrium coreshapefor alkanethiolateMPCs. I nterestingly, the number of core Au atoms in closed-shell truncated octahedral MPC structures tends toward certain stable populations or "magic numbers", including clusters with 225, 314, and 459 core Au atoms. ${ }^{6 c}$ Such observations are consistent with assuming an equilibrium core structure model for MPC reaction products, as we have done in our own work. ${ }^{3}$ Several TEM studies have illustrated patterned self-assembly in cast MPC films, including char-acteristiccore-corespacings that correlatewith someform of interdigitation of chains or chain bundles of the protecting alkanethiolate monolayers.3,9

Obtaining core size dispersity information for MPC preparations is also important. TEM histograms of MPC samples often display multimodal distributions with maxima generally repeated in replicate histograms and indicate, in accord with previous work, ${ }^{3,7}$ a preferencefor cluster magic numbers. Previous MPC synthesis studies have focused on the MPC reaction products of a fixed reaction time(typically $12-24 \mathrm{~h}$). Whetten and co-workers, however, report that quenching thereaction at short times ($<15 \mathrm{~min}$) produces larger abundances of MPCs with very small core sizes ($<1.6 \mathrm{~nm}$ average diameter). ${ }^{7 \mathrm{7a}, \mathrm{c}}$
Figure 1 shows representative TEM images and core diameter histograms (insets, notethat thedistancescales are not all the same) of hexanethiolate-coated MPCs isolated from a reaction mixture after 0.5, 50, and 125 h reaction times. After 0.5 h (Figure 1a histogram), two population ranges of cluster size appear to have formed: one with number-average core diameter $1.4 \pm 0.4 \mathrm{~nm}$ (comprises $\sim 65 \%$ of thetotal MPC population) and another with averagecorediameter $2.3 \pm 0.3 \mathrm{~nm}$ (comprises $\sim 35 \%$ of the total MPC population). The overall average core diameter is $2.0 \pm 1.1 \mathrm{~nm}$. The population of nanoparticles with average diameters > 3 nm is quite small, in relative terms; these specimens are prominent in theTEM images because of size not population. The above modality is less evident after 50 h of reaction (Figure 1 b histogram; the average corediameter has increased to $2.6 \pm 0.80 \mathrm{~nm}$) but is slightly moreevident after 125h (Figure 1chistogram), where the population of $2.0 \pm 1.0 \mathrm{~nm}$ includes $\sim 55 \%$ of theMPCs. Theoverall averagenanoparticlediameter has increased to $3.1 \pm 1.4 \mathrm{~nm}$.

The time course of the average core diameter (and variance) in the reaction mixture is shown in Figure 2. The fluctuation in average size at 22 h is probably an artifact. Whilethevarianceis substantial, it appears that theaveragesizeincreases over the course of reaction time. The trend of gradually increasing average core diameter is consistent with the shorter timeinformation of Whetten et al. ${ }^{\text {c }}$ Figure 3 gives data for the time course of different core size populations of MPCs. The oscillations in the diameters over short periods of time may or may not be significant, but thetrends in the data over longer periods of time are clear. Figure 3a shows that the population of smaller MPCs (diameters < 1.5 nm) drops rapidly during thefirst few hours of the reaction and then roughly levels

[^3]

Figure 1. TEM and core size histograms (insets) of hexanethiolate MPCs at various reaction times: (A) 0.5 h , (B) 50.5 h , and (C) 125 h . The number-average diameters and standard deviations (variances) for the histograms are noted in the insets.

Figure 2. Plot of average hexanethiolate MPC core diameter (-) and diameter variance (error bars) as a function of reaction time, as determined from TEM core size histograms from all collected data.

Figure3. Changein MPC corediameter fractional population as a function of time: (A) $\mathrm{d}<1.5 \mathrm{~nm}$, (B) $1.5<\mathrm{d}<2.0 \mathrm{~nm}$ and $2.0<d<2.5 \mathrm{~nm}$, and (C) d > 3.0 nm . Lines are in place for eye-guiding only; fluctuations over short time periods are probably not significant.
off, whilethepopulation of thelarger MPCs climbs steadily after about 50 h (Figure 3c). The populations of inter-mediate-sized MPCs correspondingly go through a maximum at intermediate times (Figure 3b). (MPCs in the $2.5-3.0 \mathrm{~nm}$ range (not shown) account for a relatively small ($\sim 10-20 \%$), modestly varying population over the entire time span.)

A nucleation-growth-passivation reaction process is anticipated gi ven the nature of reactions (1) and (2). The TEM results are consistent with this simple picture at rel atively short reaction times (< ca. 20 h), but the longer time overall core size increase suggests that further processes that alter coresizes areat work after theinitial passivation stage. Somekind of anneal ing process reduces the population of smaller core MPCs and increases the population of Iarger ones. The process(es) operates in a
raw and rather complex reaction medium, which contains reactant debris that includes chloride, bromide, and tetraalkylammonium ions, excess thiol, disulfide, and borohydride reagent products. Toluene solutions of isolated, purified MPCs are, in contrast, typically stable in coresizefor moreextended periods (> month), soa certain number of these non-M PC debris species must trigger the growth events in Figures 2 and 3. The complexity of the possibilities makes speculation on detailed chemical mechanisms unwarranted. It also is not possible to distinguish between processes that move single or small numbers of Au moieties from shrinking to growing clusters ${ }^{10}$ and processes in which smaller cores fuse to formlarger ones; the changes from small tolarge average core diameters can be accommodated, according to numbers of core atoms, by core fusion. F or example, 1.4, 2.0, and 3.0 nm diameter truncated octahedral MPC cores would contain ca. 116, 314, and 976 Au atoms. ${ }^{3}$ The data in Figures 2 and 3 thus represent a first but incomplete step in the dissection of reactions (1) and (2). Recent data by Whetten and co-workers ${ }^{6 \mathrm{~d}}$ make it clear that etching does occur, but the detailed chemical mechanism of such processes also remains unknown.
QDL Capacitance Measurements. Thedoublelayer capacitance of MPCs dissolved in electrolyte solutions is sensitivetoboth thethickness of themonolayer dielectric ${ }^{7 d}$ and the diameter of the conducting MPC core. ${ }^{7 a, c}$ This charging is a novel aspect of MPC electrochemistry, because for sufficiently small M PC core sizes it occurs as a singleelectron or QDL charging event that is observable in room-temperature M PC solutions of uniform core size by a variety of voltammetric procedures. ${ }^{7}$ The effect is rooted in thetiny (sub-attoF arad, aF) capacitance ($\mathrm{C}_{\mathrm{cLU}}$) of the MPC in an electrolyte solution, which causes the voltage increment (V) from single electron/MPC events to be > $\mathrm{k}_{\mathrm{B}} \mathrm{T}$, producing well-resolved current peaks in experiments such as those in the differential pulse voltammogram (DPV) of Figure 4.
Although an electrostatically based process, the thermodynamics of one electron QDL charging events have been shown ${ }^{7 c}$ to formally resemble that of conventional redox reactions (such as the oxidation of ferrocene), including a "formal potential" characteristic of each change-of-core-charge charging event, which referenced to the potential of zero core charge ($E_{P z C}$) is

$$
\begin{equation*}
\mathrm{E}_{\mathrm{z}, \mathrm{z-1}}^{\circ}=\mathrm{E}_{\mathrm{PZC}}+\frac{\left(\mathrm{z}-\frac{1}{2}\right) \mathrm{e}}{\mathrm{C}_{\mathrm{CLU}}} \tag{3}
\end{equation*}
$$

where $E^{\circ}{ }_{z, z-1}$ is theformal potential of the $z /(z-1)$ charge state"couple". In DPV experiments such as that of Figure 4, the value of $E_{z, z-1}^{\circ}$ is taken as theaverage of thepositiveand negative-going (dc) potential sweeps (averaging out $\left.i R_{u n c}\right)$. The z value is signed such that $z>0$ and $z<0$ correspond to core "oxidation" and "reduction", respectively. Insofar as $\mathrm{C}_{\mathrm{cLu}}$ is potential independent, which seems to be so for potentials not far removed from $E_{\text {PZC }}{ }^{7}$ this relation predicts a linear plot of $E_{z, z-1}^{\circ}$ Vschargestate, with $\mathrm{C}_{\text {clu }}$ determined from its slope.

Intuitively, and according tosimulations, ${ }^{7 c}$ oneexpects that QDL peaks will be unresol ved and absent in theDPV of solutions of MPCs containing a continuum mixture of coresizes (and thus of ΔV values). Previous QDL charging experiments ${ }^{7 a-c}$ were accordingly conducted on samples of MPCs that had been solubility-fractionated and contained reasonably monodisperse core sizes. We have,
(10) Mayya, K. S.; Sastry, M. Langmuir 1998, 14, 6344-6346.

Figure 4. Differential pulse voltammograms of ca. 0.1 mM hexanethiolate MPC in 2:1 toluene/ $/ \mathrm{CH}_{3} \mathrm{CN}(\mathrm{v} / \mathrm{v})$ at various reaction times: (A) 0.5 h , (B) 50.5 h , and (C) 125 h . Peaks separated by $\sim 0.3 \mathrm{~V}$ are denoted with $*$ in part C while those which have $\sim 0.23 \mathrm{~V}$ separation are denoted with \#. A dc potential ramp of $10 \mathrm{mV} / \mathrm{s}$ and either a 20 (A, B) or 50 mV (C) pulse amplitude were employed. All measurements were acquired on a $0.06 \mathrm{~cm}^{2}$ Pt working electrode in the presence of 0.05 M THAP supporting electrolyte.
however, recently discovered that QDL charging peaks are al so seen in solutions of crude, unfractionated MPCs, most particularly thosewith hexanethiolate ${ }^{7 d}$ or arylthiolate ${ }^{11}$ monolayers. The DPV traces in Figure 4 are for unfractionated MPC samples removed from the MPC syntheticreaction (likethoseused in theTEM experiments above). Despite the core size dispersity obvious in the Figure 2 histograms, QDL charging peaks are quite discernible at all times, especially at potentials close to $\mathrm{E}_{\text {PZc }}$. Our understanding of DPV quantized charging observations such as Figure 4 is that certain, discrete core size populations must be sufficiently numerous to yield definable charging peaks resting upon a charging current background duetooverlapping peaks of other more uniformly populated core (i.e., not very different) sizes. An analysis of core size from the potentials at which the QDL charging peaks appear is therefore a determi nation selective to these particular populations, as opposed to the general determination of core size that results from TEM measurements as in Figures 1-3.

Estimation of the potentials of theQDL peaks in Figure 4 (and other DPV results not shown) leads to the eq 3 plots shown in Figure 5a, as a function of reaction time. The slopes of these plots can be used to evaluate cluster capacitance ($\mathrm{C}_{\text {clu }}$) as a function of reaction time, as shown in Figure5b. Thereis someobvious uncertainty associated with thefact that morethan oneprevalent coresizecluster population seems to contribute to the DPV peaks; an attempt was madeto select fromthemost regularly spaced

[^4]

Figure 5. (A) Plots of QDL charging peak potentials ($E_{2, z-1}$) vs MPC charge state (z) as a function of MPC reaction time, as determined from differential pulse voltammograms from all collected data. Straight lines are the corresponding linear regressions. (B) Variations of MPC potential-of-zerocharge ($\mathrm{E}_{\mathrm{pzc}}$ \uparrow) and capacitance ($\mathrm{C}_{\mathrm{cLu}}, \bullet$) with reaction times. Lines are for eye-guiding only.
peaks from Figure 4 for the Figure 5a plots. In general, MPC capacitance (\bullet) starts out lower (0.49 aF) and, with some fluctuation, levels out ($\sim 0.52 \mathrm{aF}$) before rising at the end of the reaction course (125 h) to 0.57 aF . This trend in $\mathrm{C}_{\text {clu }}$ indicates an increase in the prevalent core size producing the QDL peaks, a result qualitatively consistent with the TEM results presented above.
(The minimum in DPV currents nearest -0.2 V was selected as thepotential of zeroMPC corecharge, following results from an ac impedance study of surface-attached MPCs. ${ }^{12}$ The time variation of the actual value of the minimum potential is shown in Figure5b(\leqslant); theapparent $E_{\text {pzc }}$ value seems to drift toward more negative values during the reaction but shows a positive jump at the end. The meaning of this change is unclear and may be influenced by the changing EPZC of the background of closely spaced cluster core sizes.)
Recent studies of the monolayer chain-length dependence of CcLu of carefully fractionated MPC samples have shown that $\mathrm{C}_{\text {CLU }}$ varies with thethickness of themonolayer dielectric in remarkable agreement with a simple concentric sphere capacitance model:7d

$$
\begin{equation*}
\mathrm{C}_{\mathrm{CLU}}=4 \pi \epsilon_{0} \epsilon(\mathrm{r} / \mathrm{d})(\mathrm{r}+\mathrm{d}) \tag{4}
\end{equation*}
$$

where ϵ_{0} is the permittivity of free space, ϵ the dielectric constant of the monolayer, r the MPC core radius, and d the monolayer dielectric thickness. A value of $\epsilon=3$ fits

[^5]thechain-length variation. Given thesuccess of this simple model, eq 4 can be employed to estimate, from an experimental value of $\mathrm{C}_{\mathrm{CLU}}$ and known monolayer chain length, the value of coreradius producingthat $\mathrm{C}_{\text {CLU }}$ value. Thus, values of $\mathrm{C}_{\text {clu }}=0.49,0.52$, and 0.57 (for the intermediate and extremes of reaction time in Figure5b) predict not-very-different corediameters of 1.50, 1.56, and 1.66 nm . The core diameter at the intermediate times, assuming a truncated octahedral coreshape, ${ }^{6}$ corresponds to 145 atoms/Au core, which is the average product of fractionated clusters whose synthesis had been allowed to proceed for 24 h. A fractionated 145 atom MPC has 48-50 hexanethiolatechains and gives a $\mathrm{C}_{\mathrm{CLU}}=0.53 \mathrm{aF} .{ }^{7 \mathrm{~d}}$

At thelongest reaction time, theDPV result (Figure4c) is sufficiently well-resolved that a second population (\#) of charging peaks, with a smaller $\Delta \mathrm{V} \cong 0.23 \mathrm{~V}$ (giving $\mathrm{C}_{\mathrm{CLU}}=0.68 \mathrm{aF}$), can be resolved from the Au_{145} peak spacing $(*)$ dominant during most of the reaction, $\Delta \mathrm{V} \cong$ 0.30 V (giving $\mathrm{C}_{\mathrm{clu}}=0.53 \mathrm{aF}$). Equation 4 predicts a core diameter of 1.86 nm based on this additional population, which corresponds to cores containing ~ 201 Au atoms. Both of thesecoresizes areaccommodated within theTEM analysis of Figure 1. It should be emphasized that the DPV results do not, apparently because of too closely spaced core sizes, yield information about the broader spectrum of core sizes evident in the TEM images and their analysis.

This research is an important first step in understanding how MPC coresizeevolves in theSchiffrin duster synthetic reaction. An understanding of theM PC synthesis reaction will be helpful in eventually designing reactions that
produce smaller and/or more monodisperse core size clusters. We have found that, while the standard TEM method for examining core and dispersity in MPC and other nanoparticlesamples is effective, el ectrochemi cally based doublelayer charging can probenarrow-size-range populations that are natural outcomes of a particular reaction mixture. Further information on the core size dependenceof QDL chargingmeasurements would further define the utility of this approach. Because the average core size diameter gradually increases over the first 60 h of reaction and then remains largely unchanged afterward (out to 125 h) at $\sim 3.0 \mathrm{~nm}$, the results confirm that MPCs of the smallest core size are best obtained by quenching the reaction at relatively early times. ${ }^{6 a-d}$ The results further suggest that, if one or more of the reaction debris species (seeabove) is an active partici pant in corediameter growth, then the smallest core size may also be reached by eliminating such elements from the reaction scheme.

Acknowledgment. This research was supported in part by grants from the National Science Foundation (NSF) and Office of Naval Research (ONR). The authors thank Dr. M. J. Hostetler for assistance with TEM measurements. A.C.T. acknowledges support from an Edward G. Weston Electrochemical Society Summer Fellowship and an ACS Division of Analytical Chemistry Graduate Research Fellowship, sponsored by PerkinElmer.

LA991206K

[^0]: * To whom all correspondence should be addressed. E-mail: rwm@email.unc.edu.
 † Present address: Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901-4409.
 (1) (a) Schmid, G., Ed. Clusters and Colloids; VCH: Weinheim, Germany, 1994. (b) Hayat, M. A., Ed. Colloidal Gold: Principles, Methods, and Applications; Academic Press: New York, 1989; Vols. 1 and 2. (c) Haberland, H., Ed. Clusters of Atoms and M olecules; SpringerVerlag: New York, 1994.
 (2) (a) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J .; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801-802. (b) Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D.J .; Kiely, C.J. Chem. Soc., Chem. Commun. 1995, 1655-1656.
 (3) H ostetler, M.J .; Wingate, J . E.; Zhong, C.-Z.; Harris, J . E.;Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J.J .; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.; Murray, R. W. Langmuir 1998, 14, 17-30
 (4) (a) Templeton, A. C.; H ostetler, M.J.; Kraft, C. T.; Murray, R. W. J.Am. Chem. Soc. 1998, 120, 1906-1911. (b) Templeton, A. C.; H ostetler, M. J .; Warmoth, E. K.; Chen, S.; Hartshorn, C. M.; Krishnamurthy, V. M.; Forbes, M. D. E.; Murray, R. W. J. Am. Chem. Soc. 1998, 120, 4845-4849. (c) Hostetler, M. J.; Green, S. J.; Stokes, J. J .; M urray, R. W.J. Am. Chem. Soc. 1996, 118, 4212-4213. (d) Ingram, R. S.; H ostetler, M. J .; Murray, R. W. J. Am. Chem. Soc. 1997, 119, 9175-9178. (e) Hostetler, M. J .; Templeton, A. C.; Murray, R. W. Langmuir 1999, 15, 3782-3789.
 (5) Leff, D. V.; O’Hara, P. C.; Heath, J . R.; Gelbart, W. M. J . Phys. Chem. 1996, 99, 7036-7041.

[^1]: (6) (a) Whetten, R. L.; Khoury, J . T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephen, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 5, 428-433. (b) Schaaf, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W.; First, P. N.; Gutierrez-Wing, C.; Ascensio, J .; J ose-Y acaman, M.J. J. Phys. Chem. B 1997, 101, 7885-7891. (c) Alvarez, M. M.; Khoury, J. T.;Schaaff, T. G.; Shafigulin, M.; Vezmar, I.; Whetten, R.' L. Chem. Phys. Lett. 1997, 266, 91-98, (d) Schaaff, T. G.;' Whetten, R. L. j . Phys. Chem. B 1999, 103, 9394-9396.

[^2]: (7) (a) Chen, S.; I ngram, R. S.; H ostetler, M.J .;Pietron, J .J .; M urray R. W.; Schaaff, T. G.; Khoury, J . T.; Alvarez, M. M.; Whetten, R. L. Science 1998, 280, 2098-2101. (b) Ingram, R. S.; H ostetler, M. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Whetten, R. L.; Bigioni, T. P.; Guthrie, D. K.; First, P. N. J . Am. Chem. Soc. 1997, 119, 92799280. (c) Chen, S.; Murray, R. W.; Feldberg, S. W. J. Phys. Chem. B 1998, 102, 9898-9907. (d) Hicks, J. F.; Templeton, A. C.; Chen, S.; Sheran, K. M.; J asti, R.; Murray, R. W.; Debord, J.; Schaaff, T. G.; Whetten, R. L. Anal. Chem. 1999, 71, 3703-3711. (e) Pietron, J. J.; Hicks, J. F.; Murray, R. W. J . Am. Chem. Soc. 1999, 121, 5565-5570.
 (8) (a) Handbook of Preparative Inorganic Chemistry; Brauer, G., Ed.; Academic Press: New Y ork, 1965; p 1054. (b) Block, B. P. Inorg. Synth. 1953, 4, 14.

[^3]: (9) (a) Brust, M.; Bethell, D.; Schiffrin, D. J .; Kietly, C. J . Adv. Mater. 1995, 7, 795-797. (b) Harfenist, S. A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. J . Phys. Chem. 1996, 100, 13904-13910. (c) Wang, Z. L.; Harfenist, S. A.; Whetten, R. L.; Bentley, J .; Evans, N. D. J. Phys. Chem. B 1998, 102, 3068-3072. (c) Brust, M.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J J. Am. Chem. Soc. 1998, 120, 12367-12368. (e) Fink, J.; Kiely, C. J .; Bethell, D.; Schiffrin, D. J. Chem. Mater. 1998, 10, 922-926. (f) Baum, T.; Bethell, D.; Brust, M.; Schiffrin, D. J. Langmuir 1999, 15, 866-871.

[^4]: (11) Chen, S.; Murray, R. W. Langmuir 1999, 15, 682-689.

[^5]: (12) Chen, S.; Murray, R. W. J. Phys. Chem. B 1999, 103, 999610000.

