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A B S T R A C T   

Hydrogen production by alkaline water electrolysis represents an effective route for low-cost and clean energy 
conversion. However, as hydrogen ions (H+) are the minority species in alkaline media, the kinetics of hydrogen 
evolution reaction (HER) is markedly reduced. Concurrently, the transport of hydroxide ions (OH–) is limited 
under large current density in alkaline oxygen evolution reaction (OER). Herein, Ni nanoparticles-decorated Mo- 
Ni microrods (Ni/Mo-Ni) are adopted to boost the ion adsorption. Finite-element simulations suggest that a 
strong local electric field around the Ni nanoparticles exponentially increases ion adsorption towards the elec-
trode surface, which facilitates reaction kinetics and mass transfer for HER at the cathode and OER at the anode. 
Thus, the Ni/Mo-Ni electrode exhibits a low overpotential of only − 24 mV for HER and + 215 mV for OER to 
reach the current density of 10 mA cm− 2, and can achieve an industrial alkaline splitting current density of 100 
mA cm− 2 at a low voltage of 1.76 V and stably operate for 87 h. This work suggests a new paradigm in the design 
and engineering of high-performance catalysts for alkaline electrolyzers.   

1. Introduction 

Alkaline water splitting is a promising approach to the production of 
clean hydrogen energy, which is widely considered as an important 
chemical resource and promising energy carrier [1–6]. Water-alkali 
electrolyzers have been hailed as an attractive technology for the in-
dustrial production of hydrogen [7–10]. However, the low hydrogen ion 
(H+) concentration in alkaline media has been known to hamper the 
kinetics of the hydrogen evolution reaction (HER), resulting in an ac-
tivity 2 to 3 orders of magnitude lower than that in acidic media and 
hence a low efficiency of water splitting [10–13]. Meanwhile, the 
transport of hydroxide ion (OH–) is a limitation under large current 
density in oxygen evolution reaction (OER) at the anode [14–18]. One 
can envision that surface enrichment of H+ and OH– can significantly 
boost the efficacy of both HER and OER, if such an ion-enhanced envi-
ronment can be enabled at the electrode surfaces. 

Recently, the electric field-induced reagent concentration (FIRC) 

effect has attracted great attention in electrocatalysis. In previous 
studies [19–22], we observed that a high local electric field (LEF) could 
improve the catalytic activity. For instance, the LEF generated on the 
tips of Au nanoneedles induced K+ aggregation and high CO2 concen-
tration around the active sites and greatly promoted CO2 reduction re-
action (CO2RR) on the Au nanoneedles [19]. Yang’s group demonstrated 
that the LEF at the tips of PtNi and NiFe facilitated the selective 
adsorption of H+ and OH–, leading to enhanced performance towards 
alkaline HER and OER, respectively [14,23]. Yet, despite the progress, 
the cell voltages in full water splitting have remained large with such 
catalysts, and there is an urgent need to develop high-efficiency and low- 
cost electrocatalysts for full water splitting where large current densities 
at low voltage can be produced. 

Transition metal oxides have sparked considerable interest as viable 
electrocatalysts owing to their excellent activity and durability [24–26], 
and the activity can be further enhanced by deliberate structural engi-
neering, such as vacancy engineering [27], formation of nanointerfaces 
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[28,29], and electronic modulation [30,31]. For example, oxygen va-
cancies in MoO2/NiMoO4 hybrids have been found to serve as active 
sites responsible for the high performance in water splitting [27]. 
Nevertheless, studies have been scarce focusing on the effect of ion 
adsorption on the efficacy of water splitting. 

In the present study, we prepared Ni nanoparticles-decorated Mo-Ni 
microrods (Ni/Mo-Ni) nanostructures via a facile hydrothermal method, 
which needed a low overpotential (η10) of only − 24 mV in HER and +
215 mV in OER to reach the current density of 10 mA cm− 2 in alkaline 
media. Finite-element simulations demonstrated that a strong local 
electric field around the Ni nanoparticles exponentially increased the 
ion adsorption towards the electrode surface, which facilitated reaction 
kinetics and mass transfer for HER at the cathode and OER at the anode. 
The obtained Ni/Mo-Ni electrodes were used as bifunctional catalysts 
for industrial alkaline water splitting requiring only a cell voltage of 
1.50, 1.76, and 1.87 V to reach the current density of 10, 100, and 400 
mA cm− 2, respectively, and could stably operate for 87 h. This perfor-
mance is markedly better than that with commercial Pt/C-IrO2 catalysts. 

2. Experimental section 

2.1. Materials 

Ammonium molybdate tetrahydrate ((NH4)6Mo7O24⋅4H2O), nickel 
(II) nitrate (Ni(NO3)2⋅6H2O), potassium hydroxide (KOH), carbox-
ymethyl carboxyethyl cellulose (HECMC), nickel chloride (NiCl2⋅6H2O), 
hydratehydrazine, and platinum on graphitized carbon (20 wt% Pt/C) 
were purchased from Aladdin Reagents Co., Ltd. Deionized water 
(MillQ, 18.2 MΩ cm) was used throughout the entire study. 

2.2. Sample preparation 

Firstly, a piece of Ni Foam (NF) was sonicated in 3.0 M HCl for 10 
min to remove the NiO layer on the surface, washed with ethanol and 
deionized water, and dried in air. NiMoO4 precursors were synthesized 
by a hydrothermal method. In brief, 40 mmol of Ni(NO3)2⋅6H2O and 10 
mmol of (NH4)6Mo7O24⋅xH2O were dissolved in 30 mL of deionized 
water. After gentle stirring for 30 min, the solution was transferred to a 
50 mL Teflon-lined stainless steel autoclave with a piece of the clean NF 
(2 cm × 3 cm). The autoclave was sealed and heated at 150 ◦C for 6 h in 
an oven and then cooled down to room temperature naturally. Finally, 

Fig. 1. (a) Schematic illustration of the synthesis of Ni/Mo-Ni. (b-d) SEM images of Ni/Mo-Ni at different magnifications. (e-f) HRTEM images of Ni/Mo-Ni at 
different magnifications, and (g) the corresponding elemental maps of Ni, Mo, and O. 
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the product was taken out, rinsed with deionized water and ethanol 
several times, and dried at 60 ◦C in air. The obtained NiMoO4 precursor 
was then heated in a tube furnace at 500 ℃ for 30 min under an H2/Ar 
(10%) atmosphere, affording Ni nanoparticles-decorated MoO2/ 
NiMoO4 microrod arrays. The final product was denoted as Ni/Mo-Ni. 
Two additional samples were prepared in the same manner except 
that the heating time was varied to 15 min and 2 h, and referred to as Ni/ 
Mo-Ni@15 mins, and Ni/Mo-Ni@2h, respectively. 

The surface Ni nanoparticles were removed by immersing Ni/Mo-Ni 
into 3 M HCl for 6 h, and the remaining solids (Mo-Ni) were collected by 
centrifugation, rinsed with deionized water and ethanol several times, 
and dried at 60 ◦C in air. 

2.3. Characterizations 

The crystalline structures of the samples prepared above were 
characterized via powder X-ray diffraction (XRD) with a Rigaku D/Max- 
2550 diffractometer. Scanning electron microscopy (SEM) studies were 
performed with an FEI Quanta 3D field-emission scanning electron mi-
croscope. Transmission electron microscopy (TEM) images were ob-
tained on an FEI TF20 TEM microscope, where energy-dispersive X-ray 
(EDX) spectroscopy-based elemental mapping measurements were 
conducted. X-ray photoelectron spectroscopy (XPS) measurements were 
performed on a Thermo Fisher ESCALAB 250Xi spectrometer using 
monochromatized Al Kα excitation, where the binding energies were 
calibrated against the C 1 s peak at 284.8 eV. 

2.4. Electrochemical measurements 

Electrochemical measurements were performed in a three-electrode 
system. The data were collected by using a Princeton electrochemical 
workstation. The Ni/Mo-Ni sample prepared above, carbon rod, Ag/ 
AgCl in saturated KCl were used as the working, counter, and reference 

electrodes, respectively (the corresponding catalyst loading was ca. 2.5 
mg cm− 2). Comparative studies were also conducted with Pt/C at the 
mass loading of 2.5 mg cm− 2. Linear sweep voltammetry (LSV) of HER 
and OER was performed in a 1 M KOH solution at a scan rate of 2 mV s− 1. 
All polarization curves were recorded with manual iR-correction, and 
the potentials were converted to the reversible hydrogen electrode 
(RHE), ERHE = EAg/AgCl + 0.197 + 0.0591pH. The solution was deaerated 
with N2 gas for 20 min before HER/OER measurements. Cyclic vol-
tammetry (CV) was conducted to test the long-term stability at a sweep 
rate of 100 mV s− 1. Electrochemical impedance spectra were acquired 
within the frequency range of 100 kHz to 0.1 Hz. 

3. Results and discussion 

3.1. Structural characterizations 

As illustrated in Fig. 1a, Ni/Mo-Ni microrod arrays were synthesized 
via a two-step procedure: (a) hydrothermal synthesis of NiMoO4 
microrod arrays on NF using Ni(NO3)2⋅6H2O and (NH4)6Mo7O24⋅xH2O 
as the precursors, and (b) thermal treatment of NiMoO4 under a 
hydrogen atmosphere [11,32–34]. From the SEM images in Fig. 1b-d, 
the produced Ni/Mo-Ni catalyst can be seen to exhibit a microrod 
morphology, which consisted of a rather dense array of microrods of ca. 
1 μm in diameter and 16 μm in length. High-resolution TEM measure-
ments (Fig. 1e-f) show that the microrod surfaces were decorated with a 
number of small nanoparticles of ca. 10 nm in diameter. Both the 
nanoparticles and microrods exhibited well-defined lattice fringes, with 
an interplanar spacing of 0.202 nm for the nanoparticles and 0.247 nm 
and 0.336 nm for the microrods that can be assigned to the Ni(111), 
MoO2(100), and NiMoO4(100) planes, respectively [35–38]. In EDX- 
based elemental mapping analysis (Fig. 2g), the Ni, Mo, and O ele-
ments can be found across the sample, and the distributions of Mo and O 
were rather even, whereas Ni was enriched within the nanoparticles. 

Fig. 2. (a) XPS survey spectrum of Ni/Mo-Ni and the corresponding high-resolution scans of the (b) O 1 s, (c) Ni 2p, and (d) Mo 3d electrons of Ni/Mo-Ni and Mo-Ni. 
In panels (b), (c), and (d), black curves are experimental data and colored peaks are deconvolution fits. 
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The surface Ni nanoparticles could be readily removed by HCl etching, 
as evidenced in SEM measurements (Figure S1), where the resulting Mo- 
Ni microrods exhibited a mostly smooth surface. 

The crystal structures of the obtained samples were then examined 
by XRD measurements. To minimize background interference, the 
sample was scratched off from the NF. From Figure S2, the Ni/Mo-Ni 
sample can be seen to exhibit four sharp peaks at 2θ = 37.3◦, 43.9◦, 
51.5◦, and 63.3◦, which can be ascribed to the (100) facets of MoO2 
(JCPDS 50–0739), (111) facets of Ni (JCPDS 04–0850), (100) facets of 
Ni (JCPDS 04–0850), and (100) facets of NiMoO4 (JCPDS 13–0128) 
[28,39–41], respectively. The elemental composition and valence state 
was then probed by XPS measurements. From the survey spectrum in 
Fig. 2a, the elements of Ni (875 eV), Mo (232 eV), O (530 eV), and C 
(284 eV) can be readily identified in Ni/Mo-Ni. As shown in Fig. 2b, the 
high-resolution scans of the O 1 s electrons include a peak at 529.9 eV 
corresponding to Mo-O bonds [29]. The high-resolution scans of the Ni 
2p electrons are shown in Fig. 2c. Deconvolution of the Ni/Mo-Ni 
spectrum yields a doublet at 852.8/870.1 eV for the 2p3/2/2p1/2 elec-
trons of metallic Ni [9], and another one at 855.7/873.1 eV for Ni2+

[22]. From the Mo 3d spectrum in Fig. 2d, three doublets can be 
deconvoluted for the 3d5/2/3d3/2 electrons of Mo3+ at 228.7/231.8 eV, 
Mo4+ at 229.5/232.8 eV, and Mo6+ at 231.8/234.9 eV [42–45]. After 
removal of the Ni nanoparticles by acid etching (Fig. 2c and 2d), the 
metallic Ni peaks disappeared, and the Ni2+ 2p and Mo3+ 3d peaks shift 
to a higher energy by ~ 0.4 eV and ~ 0.3 eV, respectively, suggesting 
electron transfer from Ni nanoparticles to Mo-Ni in Ni/Mo-Ni. 

3.2. Electrocatalytic activity 

We then assessed the samples’ electrocatalytic activities towards 
HER in 1 M KOH with a standard three-electrode system. From the HER 
polarization curves in Fig. 3a, one can see that in comparison to bare NF, 
the activity of Mo-Ni was apparently improved. Further enhancement 
can be observed with Ni/Mo-Ni, which even outperformed commercial 
Pt/C at low overpotentials. The η10,HER value can be seen to vary in the 
order of Ni foam (-245 mV) > Mo-Ni (-204 mV) > Pt/C (-46 mV) > Ni/ 
Mo-Ni (-24 mV) (Fig. 3b). The corresponding Tafel slope was estimated 
to be 39 mV dec− 1 for Ni/Mo-Ni, which is slightly greater than that of 
Pt/C (37 mV dec− 1), but significantly lower than those of Mo-Ni (192 
mV dec− 1) and nickel foam (84 mV dec− 1) (Fig. 3c) - this is consistent 
with the increasing overpotential of Ni/Mo-Ni, as compared to Pt/C. The 
fact that the HER activity of Ni/Mo-Ni was drastically better than that of 
Mo-Ni suggests the significant role of Ni nanoparticles in boosting the 
HER electrocatalysis. 

As shown in Figure S3, the Ni/Mo-Ni electrode exhibited the largest 
double-layer capacitance (Cdl, 0.696 mF cm− 2), as compared to bare NF 
(0.540 mF cm− 2) and Mo-Ni (0.169 mF cm− 2), suggesting the largest 
electrochemical surface area (ECSA) among the series in HER (Table S1). 
Consistent results were obtained in electrochemical impedance spec-
troscopic measurements at − 0.025 V (Figure S4 and Table S2), where 
Ni/Mo-Ni was found to possess the lowest charge transfer resistance 
(Rct) of 2.25 Ω, as compared to 3.87 Ω for Mo-Ni and 7.81 Ω for pristine 
NF. To further evaluate the intrinsic electrocatalytic activity of these 
catalysts for HER, the turnover frequency (TOF) was also computed and 
compared, and Ni/Mo-Ni shows a TOF of 0.052 s− 1 (Figure S5) mark-
edly larger than those of Mo-Ni (0.0019 s− 1) and pristine NF (0.0017 

Fig. 3. (a) HER polarization curves of nickel foam, Mo-Ni, Ni/Mo-Ni, and Pt/C in 1 M KOH. (b) The corresponding overpotentials at the current density (j) of 10, 50, 
and 100 mA cm− 2 and (c) Tafel slopes. (d) HER polarization curves of the Ni/Mo-Ni electrode before and after 5000 CV cycles, along with the chronoamperometric 
test for 100 h at − 0.16 V vs. RHE (inset). 
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s− 1). 
The Ni/Mo-Ni electrode also shows good durability in alkaline so-

lutions. The polarization curve remained virtually unchanged after 5000 
potential cycles (Fig. 3d). In addition, we explore the long-term stability 
of the electrocatalyst tested at the fixed at − 0.16 V vs. RHE, the Ni/Mo- 
Ni electrode current density of 100 mA cm− 2 remained almost invariant 
for 100 h (Fig. 3d inset). Notably, the morphology and XRD patterns of 
the electrocatalyst stayed unchanged even after these long-term dura-
bility tests, attesting to the superb structural stability of the catalysts 
(Figure S6 and S7). In fact, the HER performance (e.g., Tafel slope and 
η10,HER) of Ni/Mo-Ni was superior or highly comparable to leading re-
sults of Ni- and Mo-based catalysts reported recently in the literature 
(Table S3). 

The OER activity of the prepared electrocatalysts was also studied in 
the same solution. From the OER polarization curves in Fig. 4a, one can 
see that the Ni/Mo-Ni electrode again exhibited the best performance 
among the series, with an ultra-low η10,OER of + 215 mV, in comparison 
to + 329 mV for IrO2, +355 mV for Mo-Ni, and + 369 mV for Ni foam; 
and a similar trend can be seen at other current densities (Fig. 4b). The 
Ni/Mo-Ni electrode also displays a lower Tafel slope (39 mV dec-1) than 
IrO2 (91 mV dec-1), Mo-Ni (80 mV dec-1), and Ni foam electrodes (93 mV 
dec-1) (Fig. 4c). As shown in Figure S8, the Ni/Mo-Ni electrode also 
exhibited the largest double-layer capacitance (Cdl, 1.92 mF cm− 2), as 
compared to Ni Foam (0.97 mF cm− 2) and Mo-Ni (1.73 mF cm− 2), 
suggesting the largest ECSA among the series in OER (Table S4). 

Consistent results were obtained in electrochemical impedance 
spectroscopic measurements at + 1.48 V (Figure S9 and Table S5), 
where Ni/Mo-Ni was found to possess the lowest Rct of 0.37 Ω, as 
compared to 4.84 Ω for pristine NF and 1.13 Ω for Mo-Ni. The TOFOER 
values of these electrocatalysts are also shown in Figure S5c, where Ni/ 

Mo-Ni reveals a value of 0.171 s− 1, much higher than Mo-Ni (0.003 s− 1) 
and Ni foam (0.0023 s− 1), confirming the superior intrinsic electro-
catalytic activity of Ni/Mo-Ni for OER. The Ni/Mo-Ni electrode also 
shows good durability in OER. The polarization curve exhibited only a 
small change after 5000 potential cycles (Fig. 4d). Moreover, the Ni/Mo- 
Ni electrode shows high stability in a long time at the fixed at 1.67 V vs. 
RHE (Fig. 4d inset), the current density was largely invariant for over 
100 h. Notably, the OER performance (e.g., Tafel slope and η10, OER) of 
Ni/Mo-Ni was highly comparable or even superior to Ni- and Mo-based 
catalysts reported recently in the literature (Table S6). 

Encouraged by the outstanding bifunctional activity of the Ni/Mo-Ni 
electrode, Ni/Mo-Ni was used as both the cathode and anode catalysts, 
separated with a FAB-3-pk-130 membrane, for an AEM-based water 
electrolyzer in a flowing 1 M KOH solution (Fig. 5a and insets to 
Fig. 5d). From Fig. 5b, one can see that the electrolyzer needed a cell 
voltage of only 1.50, 1.66, and 1.76 V to drive water splitting at the 
current density of 10, 50, and 100 mA cm− 2, respectively. The perfor-
mance was markedly better than that based on commercial Pt/C 
(cathode) and IrO2 (anode) catalysts or based on NF alone (Fig. 5c). In 
general, a 2.4 V cell voltage is needed to drive 400 mA cm− 2 in com-
mercial alkaline water electrolysis; yet with the prepared Ni/Mo-Ni 
electrodes, an ultralow cell voltage of 1.87 V was needed to generate 
such a current density, demonstrating the superior performance of the 
Ni/Mo-Ni electrolyzer in full water splitting, as compared to leading 
results reported recently in the literature with relevant bifunctional 
electrocatalysts (Table S7). Hydrogen was continuously generated at the 
rate of 6.35 mL min− 1 at a fixed current density of 100 mA cm2 for 2500 
s, as shown in Figure S10; and the AEM system maintained a high en-
ergy efficiency of around 72 %. The Ni/Mo-Ni electrolyzer also exhibited 
high stability. At the cell voltage of 1.76 V, the current density remained 

Fig. 4. (a) OER polarization curves of nickel foam, Mo-Ni, Ni/Mo-Ni, and Pt/C in 1 M KOH. (b) The corresponding overpotentials at the current density (j) of 10, 50, 
and 100 mA cm− 2 and (c) Tafel plot. (d) OER polarization curves of the Ni/Mo-Ni electrode before and after 5000 CV cycles. along with the chronoamperometric test 
for 100 h at 1.67 V vs. RHE (inset). 

H. Li et al.                                                                                                                                                                                                                                        



Chemical Engineering Journal 435 (2022) 134860

6

virtually invariant at 100 mA cm− 2 for over 87 h’s continuous operation 
(Fig. 5d). 

To evaluate the Faraday efficiency, the Ni/Mo-Ni samples were used 
as both the cathode and anode, and the produced H2 and O2 gases were 
collected using a drainage method in a two-electrode configuration at 
10 mA cm− 1 for 1250 s. As shown in Figure S11-S12, the produced H2 to 
O2 showed a volume ratio of 2.13:1, very close to the theoretical value of 
2:1, and the Faradaic efficiency was estimated to be ca. 99.5% (details in 
the Supporting Information). This result confirms that Ni/Mo-Ni can 
indeed be used as an efficient and durable electrocatalyst toward water 
splitting. 

3.3. Theoretical simulations and OH– measurments 

To unravel the mechanistic origin of the remarkable electrocatalytic 
activity, finite element simulations based on COMSOL were carried out 
to probe the LEF on the microrod surface. 2D models were constructed to 
represent the electric field distribution on the surface of a smooth Mo-Ni 
structure with and without Ni nanoparticles. As shown in Fig. 6a1-6a2, 
for the smooth Mo-Ni structure, a high electric field appears only near 
the corner of the Mo-Ni microrods during HER electrocatalysis. Yet for 
Ni/Mo-Ni where the Mo-Ni surface was decorated with many Ni nano-
particles (with a surface coverage of ca. 80 per μm2, Figure S13), a high 
electric field (red regions in the figure) can be found surrounding each of 
the Ni nanoparticles. These hot spots were distributed around the entire 
electrode surface and significantly altered the reaction kinetics at the 
corner areas, which is believed to be the major driving force in 
enhancing the catalytic activity [46,47]. In addition, these hot spots 
greatly increased the reactive surface area of the Mo-Ni microrods. That 
is, the formation of a local high-curvature morphology by Ni nano-
particles in Ni/Mo-Ni increased the catalytic activity by widening the 

distribution of a high local electric field across the Mo-Ni surface. A 
similar enhanced electric field is observed in OER electrocatalysis 
(Fig. 6b1-6b2). 

Notably, around the Ni particles, the H+ and OH– concentrations 
were significantly enhanced during HER and OER, respectively. The 
models were constructed to evaluate the OH– concentration distribu-
tions on the microrod structure in an electrolyte solution. In a quasi- 
static simulation condition, the electric field can reach 0.8 V μm− 1 at 
the smooth Mo-Ni model (Fig. 6c and Table S8), with an OH– concen-
tration of 1 mol L-1 (Fig. 6a3) in HER. By contrast, the electric field is 
markedly stronger at 2 V μm− 1 for the Ni/Mo-Ni structure, and the 
repulsion of OH– is far higher than that on smooth Mo-Ni (Fig. 6a4). 
These results demonstrated higher H+ accumulation on the Ni/Mo-Ni 
surface. In OER, the same ion-enhanced situation occurs and the 
concentrate of OH– is higher than that on smooth Mo-Ni around the 
high-curvature Ni nanoparticles (Fig. 6b3-6b4). In HER, OH– decreased 
as the electric field increased, whereas in OER, OH– increased with the 
increase of the electric field (Fig. 6c). Based on the above results, one can 
see that the Ni nanoparticles on the Mo-Ni surface provide a local 
electrical field, where the resultant local ion-enhanced environment 
facilitated the catalytic reaction and hence improved the performance in 
alkaline water splitting (Fig. 6d). 

Note that the above Ni/Mo-Ni sample was prepared by thermal 
treatment at 500 ◦C for 30 min, and the electrocatalytic performance 
was markedly better than the control samples prepared at either shorter 
or longer heating (i.e., Ni/Mo-Ni@15 mins and Ni/Mo-Ni@2h) or Ni 
nanoparticles alone. From the SEM images in Figure S14-15, one can 
see that the Ni/Mo-Ni sample contained a higher number of nano-
particles than Ni/Mo-Ni@15 mins; and as the annealing time was pro-
longed to 2 h (Ni/Mo-Ni@2h), the sample surface became fully covered 
with much larger nanoparticles and the substrate no longer becomes 

Fig. 5. (a) Schematic illustration of the AEM electrolyzer. (b) Water splitting polarization curves with varied electrode catalysts at the anode and cathode in 1 M 
KOH; and (c) the corresponding cell voltages at the current density of 10, 50, and 100 mA cm− 2. (d) Water splitting current density of the Ni/Mo-Ni AEM electrolyzer 
at the cell voltage of 1.76 V. Insets are the photographs of the AEM electrolyzer. 
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smooth. As the number of nanoparticles on the smooth substrate in-
creases, more localized electric fields are generated around the nano-
particles. But as the particles get larger, their curvature does not change 
as much as the small nanoparticles on the smooth-substrated micro-
pillars. This variation of the sample surface roughness (Table S1 and S4) 
correlates well with the electrocatalytic performance (Figure S16), due 
to the LEF generated around the nanoparticles that impacted the 
adsorption of OH– ions onto the electrode surface. 

The LEF intensity can be analyzed by OH– adsorption, as a result of 
electrostatic interaction (details in the Supporting Information, 
Figure S17a). From Figure S17b, Ni/Mo-Ni can be seen to exhibit the 
lowest OH– concentration among the sample series at negative electrode 
potentials, indicating a higher negative electric field than those of Mo-Ni 
and Ni NPs in HER; whereas at positive electrode potentials the OH– 

concentration is the highest on Ni/Mo-Ni, confirming a highest positive 

electrical field (Figure S17c). These results show that the Ni/Mo-Ni has 
nanoparticles on a smooth substrate due to large changes in curvature, 
which generate a localized electric field. Therefore, the more ions are 
adsorbed for reaction to improve the performance. These are in good 
agreement with the electrocatalytic performance demonstrated above 
(Figs. 3-5). 

4. Conclusion 

The Ni/Mo-Ni microrods were prepared by a facile hydrothermal/ 
thermal annealing procedure where Ni nanoparticles were grown onto 
the Mo-Ni microrod surface. COMSOL simulations showed that the 
electrical field strength was markedly enhanced around the Ni nano-
particles leading to enhanced H+ and OH– adsorption, as compared to 
the smooth Mo-Ni microrods free of Ni nanoparticles. With this ion- 

Fig. 6. COMSOL simulation of the electronic field and ion concentration in HER and OER. (a) Electric field at the microrod surface of (a1) smooth Mo-Ni and (a2) Ni/ 
Mo-Ni, and the corresponding OH– concentration distribution at the (a3) smooth Mo-Ni and (a4) Ni/Mo-Ni in HER. (b) Electric field of (b1) smooth Mo-Ni and (b2) 
Ni/Mo-Ni, and the corresponding OH– concentration on the (b3) smooth Mo-Ni and (b4) Ni/Mo-Ni in OER. (c) Electric field and OH– concentration of Mo-Ni and Ni/ 
Mo-Ni in HER and OER. (d) Schematic illustration of the mechanism of enhanced alkaline water splitting performance. 
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enhanced environment by LEF, the Ni/Mo-Ni electrode exhibited an 
ultralow overpotential of − 24 mV in HER and + 215 mV in OER at the 
current density of 10 mA cm− 2, and can thus be used as a bifunctional 
catalyst for water-alkali electrolyzers, which needed only a low cell 
voltage of 1.50, 1.76, and 1.87 V to drive water splitting at the current 
density of 10, 100, and 400 mA cm− 2, respectively, and stably operate 
for 87 h. This performance is even better than that based on commercial 
Pt/C-IrO2 catalysts. Results from this study may open a new avenue in 
the design and engineering of Mo-Ni-based electrocatalysts for large- 
scale hydrogen generation. 
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