Metal–nitrogen coordination moieties in carbon for effective electrocatalytic reduction of oxygen
Qiming Liu¹, Qiaoxia Li¹,² and Shaowei Chen¹

Abstract
Oxygen reduction reaction is a critical process at the cathode of proton-exchange membrane fuel cells and metal–air batteries. Carbon-based single metal atom nanocomposites have emerged as effective alternatives to state-of-the-art platinum catalysts, in which the electrocatalytic activity is attributed largely to the formation of metal–nitrogen coordination moieties (MNₓ) within the carbon matrix. In this review, we summarize recent progress in the studies of metal and nitrogen codoped carbon as single-atom catalysts toward oxygen reduction reaction within the context of the atomic configuration of the MNₓ active sites and topologic characteristics of the carbon skeletons and include a perspective of the design and engineering of the nanocomposites for further enhancement of the electrocatalytic activity.

Addresses
¹ Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
² Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 2588 Changyang Road, Yangpu District, Shanghai, 200090, China

Corresponding authors: Chen, Shaowei (shaowei@ucsc.edu); Li, Qiaoxia (liqiaoxia@shiep.edu.cn)

Current Opinion in Electrochemistry 2020, 21:46–54
This review comes from a themed issue on Energy Storage
Edited by Mike Lyons and Kenneth I. Ozoemena
For a complete overview see the Issue and the Editorial
Available online 15 January 2020
https://doi.org/10.1016/j.coelec.2020.01.002
2451-9103/© 2020 Elsevier B.V. All rights reserved.

Keywords
Oxygen reduction reaction, Metal-air battery, Fuel cell, Metal and nitrogen codoped, Carbon, Coordination moiety.

Proton-exchange membrane fuel cells and metal–air batteries represent two leading technologies for next-generation sustainable and clean energy conversion [1–4]. In these electrochemical systems, oxygen reduction reaction (ORR) at the cathode plays a critical role in determining the device performance, primarily because of the sluggish electron transfer kinetics and complex pathways of ORR. Platinum-based nanoparticles have been the catalyst of choice for ORR, yet the high cost and low natural abundance has severely hampered the widespread applications of the technologies [1,3–5]. Therefore, extensive research efforts have been devoted to the development of viable catalysts that are of low cost and high activity. Within this context, single (metal)-atom catalysts (SACs) have been attracting special attention, where the high atom utilization and maximal interactions with the supporting substrate render it possible to fundamentally optimize the catalytic efficiency and concurrently minimize the cost of the catalysts [2,6]. Among the various transition metals, SACs of Fe, Co, and Cu have shown remarkable ORR activity [2,4,6], which are mostly embedded within carbon matrices by taking advantage of carbon’s low cost, high electrical conductivity, and ready manipulation of the electronic structures by deliberate doping with select heteroatoms. For instance, nitrogen is a commonly used dopant and can serve as effective binding sites to immobilize metal atoms forming M–N bonds [7]. In general, ORR occurs via two possible pathways, the direct pathway whereby oxygen undergoes four-electron reduction to water and the sequential pathway which involves the formation of hydrogen peroxide as an intermediate before the production of water [2,6]. Oxygen adsorption on SACs is in general argued to be the rate-determining step (RDS), in which a moderate adsorption is preferred for high-efficiency ORR [2]. In this review, we summarize recent progress of SACs involving Fe, Co, and Cu toward ORR, within the context of MNₓ coordination configuration [8–11], nitrogen dopants [12–14], and carbon defects [15–19] and conclude with a perspective of the promises and challenges of SAC nanocomposites in ORR electrocatalysis.

Fe,N-codoped carbon SACs have been found to exhibit apparent activity toward ORR and can outperform state-of-the-art Pt/C in alkaline media [15–18]. This is mostly ascribed to the formation of the FeNₓ moiety, in which the activity has been argued to be dependent on the x value. For example, in one recent study, Li et al. [8] prepared three FeNₓC₄₋ₓ samples (x = 1, 3, 4) by pyrolysis of N-doped carbon with Fe salts at increasing temperature and observed that the ORR activity decreased in the order of FeN₄ > FeN₃C > FeN₄C₃ both in acid and alkaline electrolytes, which is in good agreement with results from density functional theory (DFT) calculations in which the order of ORR activity was found to be FeN₄ > FeN₃C > FeN₂C₂ > FeN₃C >
FeN₅. In fact, FeN₄ has been argued to be the ORR active sites in a large number of studies [12,13,20–22]. Yet in another study, Shen et al. [9] argued that FeN₂C₂ was more beneficial for ORR than FeN₄ both experimentally and theoretically, where, owing to the solvation effect, the DFT model of FeN₂C₂ was reconfigured with an additional dangling hydroxy ligand that was connected to the Fe center. Zhu et al. [10] also observed that FeN₂-type catalysts exhibited a competitive ORR performance with a half-wave potential (E₁/₂) of +0.927 V vs. reversible hydrogen electrode (RHE) in alkaline media, and the catalysts even resisted the poisoning of SCN⁻ owing to the high affinity to O₂, which is in contrast to leading results in the literature. The fact that the ORR activity was accounted for by different FeNx coordination structures in these studies suggests that other structural factors have to be included in the mechanistic discussion.

Several important questions arise. Will the activity vary when the metal center is coordinated to pyrrolic N and pyridinic N? In addition to the metal center, are the adjacent C and N atomic sites also active in ORR electrocatalysis? In one earlier study, Lu et al. [13] pyrolyzed tellurium nanowire@melamine formaldehyde polymer impregnated with Fe salts, and they observed that the obtained Fe−N−C materials exhibited an ORR activity comparable with that of Pt/C in 0.1 M KOH. DFT calculations of two types of FeN₄ (normal pyridine-type and Stone−Wales pyrrole-type FeN₄) showed that the Fe center of either FeN₄ was the predominant active site for ORR rather than the coordinated N atoms, and the C sites in the Stone−Wales FeN₄ could also contribute to the ORR activity, whereas in metal-free N-doped carbon, the ORR activity was relatively low owing to weak binding of oxygen species to the N and C sites. Yang et al. [20] reached a similar conclusion that the ORR activity originated from the synergistic interactions between the carbon sites and Fe center of the pyrrole-type Fe−N moieties. Taken together, these results suggest that in SACs, both the metal centers and

Figure 1

Configurational transformation of FeN₄ sites in carbon and the impacts on ORR performance. (a) Preparation process of the high-purity pyrrole-type FeN₄ structure. The balls in gray, blue, and orange represent C, N, and Fe atoms, respectively. (b) Free energy diagram of the oxygen reduction reaction (ORR) on pyrrole-type FeN₄ and pyridine-type FeN₄. (c) ORR polarization curves of HP-FeN₄, FeN₄, and NC catalysts in O₂-saturated 0.5 M H₂SO₄ and 20% Pt/C in 0.1 M HClO₄ at the rotating rate of 1600 rpm. Reprinted with permission from Zhang et al. [12] © 2020 Royal Society of Chemistry. RHE, reversible hydrogen electrode; HP-FeN₄, high-purity pyrroly-type FeN₄; NC, nitrogen-doped carbon.
Biomass-derived nanowrinkled carbon aerogels embedded with FeNx moieties. (a) Dark-field STEM image of the NCAC-Zn/Fe aerogel. Red circles indicate single Fe atoms. Inset is a TEM image of the NCAC-Zn/Fe aerogel, and the scale bar is 30 nm. (b) AFM images of NCAC-Zn/Fe aerogels: adhesion

Figure 2
adjacent N and C sites need to be taken into account in ORR electrocatalysis.

In a more recent study, Zhang et al. [12] used a polyaniline precursor to prepare pyridine-type FeN4, which was then converted into pyrrole-type FeN4 by a pyrolytic treatment with ammonia (Figure 1a), as manifested in soft X-ray absorption spectroscopy (XAS) measurements of the N K-edge and X-ray photoelectron spectroscopy measurements of the N 1s electrons. Such a configurational transformation led to a significant enhancement of the ORR activity, with E1/2 increased from +0.71 V to +0.80 V in 0.5 M H2SO4 (Figure 1c). Moreover, results from the theoretical study (Figure 1b) showed that the pyrrole-type FeN4 exhibited a lower overpotential (0.35 eV) from the initial O2 to H2O than that of the pyridine-type FeN4 (0.67 eV) and suppressed the two-electron pathway of H2O2. In fact, pyrrole-type FeN4 exhibited preferred oxygen adsorption with a lower overpotential from O2 to OOH* than that for the pyridine-type FeN4.

This argument was further supported in studies with covalent organic frameworks (COFs) derived carbon that contained much better defined coordination of FeN4, in contrast to traditional pyrolysis that typically generates random configurations of FeN4. For instance, without any pyrolysis treatment, Peng et al. [23,24] prepared a π-conjugated COF to capture Fe ions in situ forming uniform pyrrole-type FeN4, used these directly for ORR electrocatalysis, and observed a high E1/2 of +0.910 V and enhanced performance as the cathode catalyst for a zinc–air battery, in comparison with commercial Pt/C.

It should be noted that in most of the earlier studies, a two-dimensional planar atomic model is generally assumed for FeN4, although topological defects are common in pyrolytic carbon. In a latest study, He et al. [14] prepared nanowrinkled carbon aerogels (NCAc-Zn/Fe) embedded with abundant FeN4 moieties by controlled pyrolysis of biomass-derived hydrogels mixed with Fe and Zn compounds. In Figure 2a, the atomic-scale wrinkled structures (Stone–Wales FeN4) can be readily identified in the TEM images. In addition, adhesion force measurements (Figure 2b) showed that the wrinkled structure exhibited a high adhesion force, corresponding to a hydrophilic domain. Fast force mapping measurements suggest that the FeN4 wrinkled regions also displayed a high electrical conductance. From the simulated STM images (Figure 2c), one can see that the wrinkled Stone–Wales FeN4 moiety indeed showed a distorted nonplanar structure, in contrast to the normal counterpart. Meanwhile, Figure 2d displays the total density of state of normal and Stone–Wales FeN4, in which the Fe centers can be found to dominate the contribution to the density of state near the Fermi level, and the marked state of Stone–Wales FeN4 can be seen to lie closer to the Fermi level than the normal pyridine-type FeN4, suggesting faster electron transfer of oxygen reduction. This is clearly manifested in electrochemical measurements (Figure 2e).

The results from these studies suggest that nonplanar/distorted carbon skeletons may lead to additional, unique manipulation of the electronic structure and facilitate mass transfer and accessibility of the ORR active sites. In other words, both coordination chemistry and carbon topology are important factors in the rational design and engineering of ORR catalysts.

Cobalt and nitrogen–codoped carbon nanocomposites have also been found to be highly active toward ORR [25–28]. For instance, Yin et al. [26] prepared carbon-supported Co SACs by controlled pyrolysis of zeolitic imidazolate frameworks (ZIFs) at different temperatures and found that CoN2 exhibited a better ORR activity (E1/2 = +0.881 V) than CoN4 (E1/2 = +0.863 V). DFT calculations showed that CoN2 was more favorable for the four-electron reduction pathway. However, similar to the iron and nitrogen–codoped carbon nanocomposites, in most studies, CoN4 is the leading coordination structure proposed to be the ORR active sites. For instance, Wan et al. [29] prepared a cobalt and nitrogen–codoped carbon nanocomposite by pyrolysis of a cobalt complex (Figure 3a) and ascribed the high ORR activity (E1/2 = +0.85 V) and anti-poisoning ability in alkaline, but not in acidic, media (Figure 3b and c) to the formation of CoN4 configurations in the final product (CoNC). They argued that the pyridinic N sites neighboring the Co center served as the main active sites when SCN− was bound to Co in alkaline, but not in acidic, media. Cheng et al. [28] also found that CoN4 exhibited better resistance against SCN− poisoning than FeN4, which is consistent with the results from DFT calculations that O2 increased the stability of CoN4 but not for FeN4. It should be noted that although CoN4 has been recognized as the ORR active moiety in most studies, further research is desired to unravel the mechanistic correlation of the CoN4 atomic configuration with the ORR activity.

Copper and nitrogen–codoped carbon nanocomposites have also emerged recently as promising ORR catalysts in alkaline media, with a performance comparable to that of state-of-the-art FeN4 [11,19,30–32]. For instance, Li et al. [11] synthesized a CuN4 SAC via
Co and Cu single atom catalysts for ORR electrocatalysis. (a) Schematic illustration of the support-assisted pyrolysis synthesis of CoNC catalysts. LSV curves of CoNC with and without 5 mM NaSCN in (b) acidic and (c) alkaline media. Reprinted with permission from Wan et al. [29]© 2018 Wiley-VCH. (d) Scheme of the formation of isolated copper sites (Cu ISAS/N–C) catalyst. (e) Free energy diagram for ORR process on these three models at the equilibrium potential (U = +0.40 V vs. NHE or U = +1.23 V vs RHE) at pH = 14. (f) LSV curves of NC, Cu ISAS/NC, and Pt/C catalysts in 0.1 M KOH solution at the sweep rate of 10 mV s⁻¹ and rotation rate of 1600 rpm. Reprinted with permission from Yang et al. [19]© 2019 Macmillan Publishers Limited. LSV, linear sweep voltammetry; ORR, oxygen reduction reaction; RHE, reversible hydrogen electrode; ISAS, isolated single atom site.
Multinuclear metal sites for ORR electrocatalysis. (a) Preparation of (Fe,Co)/N–C. (b) Energies of intermediates and transition states in mechanism of ORR at (Fe,Co)/N–C from DFT. (c) RDE polarization curves of Pt/C, Co SAs/N–C, Fe SAs/N–C, and (Fe,Co)/N–C in O2-saturated 0.1 M HClO4 with a
annealed ZIF-8 powers (at the heating rate of 1 °C min⁻¹) to produce carbon embedded with ZnN₄, which exhibited an ultrahigh loading of 9.33 wt% Zn and an E₁/₂ of +0.78 V versus ORR in 0.1 M KOH. The performance was slightly superior compared with that of the FeN₄ counterparts prepared in the same fashion, and DFT calculations showed that ZnN₄ was more stable than FeN₄ and hence was less active in binding oxygen intermediates. In another study, Luo et al. [36] pyrolyzed Cr³⁺-soaked ZIF-8 and successfully prepared CrN₄-doped carbon, which exhibited an E₁/₂ of +0.773 V in acid. In comparison with FeN₄, CrN₄ showed superb durability of ORR activity, showing only a 15 mV decrease of E₁/₂ after 20,000 cyclic voltammetric cycles. It should be noted that most metal and nitrogen-codoped carbon hybrids demonstrate remarkable ORR activity in alkaline media, but the activity deteriorates markedly in acidic media. In a recent study, Dong et al. [37] demonstrated that the assistance of a neighboring metal site led to a significant improvement of the ORR activity in acid. This suggests that structural engineering of dinuclear moieties (M₁M₂N₄) may be an effective strategy to extend the applications of carbon-based SACs to ORR in acid. For instance, Wang et al. [38] used a host–guest strategy (Figure 4a) to construct Fe–Co coupling sites in N-doped carbon, and the resulting dinuclear catalyst showed an E₁/₂ of +0.863 V in 0.1 M HClO₄, a performance much better than that of FeNₓ and CoNₓ (Figure 4c). DFT calculations of the N₃–Fe–Co–N₃ model (Figure 4b) showed that the dissociation barrier of O₂, OOH on Fe–Co dual sites, was much lower than that with FeNₓ and CoNₓ alone. In addition, the calculations showed that the bridge-like adsorption of O₂ molecules was facilitated on the Fe–Co dinuclear sites, which led to enhanced dissociation of the O atoms and the four-electron reduction pathway. In another study, Ye et al. [39] also showed that dual metal sites facilitated ORR electrocatalysis in acid. Experimentally, three iron precursors, monomeric Fe(acac)₂, dimeric Fe₂(CO)₉, and trimeric Fe₃(CO)₁₂, were encapsulated by ZIF-8, which was then pyrolyzed, resulting in the formation of iron and nitrogen–codoped carbon that exhibited individual Fe centers (Fe₁–N–C), dinuclear sites (Fe₂–N–C), and trinuclear sites (Fe₃–N–C) (Figure 4d). The Fe₂–N–C sample was found to demonstrate an E₁/₂ of +0.78 V that was better than that of Fe₁–N–C (+0.715 V) and Fe₃–N–C (+0.762 V) (Figure 4f). The results of low-temperature infrared spectroscopic measurements showed that the number of the Fe sites influenced the adsorption of O₂. As shown in Figure 4e, Fe₁–N–C mainly entailed superoxide-like adsorption of O₂ molecules, whereas the peroxide-like mode was observed with Fe₂–N–C and Fe₃–N–C. The bridge-like adsorption mode in the latter was beneficial for the cleavage of O₂ owing to the elongation of the O–O bonds. Alkaline ORR electrocatalysis can also be enhanced with a dinuclear configuration by taking advantage of the electronic coupling between the metal centers, analogous to that in alloy nanoparticles [40–45]. There are several critical challenges in these studies. The first is to develop effective synthetic protocols to prepare dinuclear atom catalysts. Second, it is critical to quantify the atomic configurations of the metal centers, in particular, the electronic interactions between the two metal sites. In addition to XAS, other techniques, such as subangstrom electron energy loss spectroscopic (EELS) mapping and in situ Raman spectroscopy, are highly desired
to resolve the fine structures of the dinuclear M$_1$M$_2$N$_x$C$_y$ moiety. In conjunction with DFT studies, the mechanistic insights can then be unraveled, an important step toward rational design and engineering of ORR catalysts in both acidic and alkaline media.

In summary, recently there has been substantial progress in the design and engineering of metal–nitrogen coordination moieties in carbon for ORR electocatalysis. Mechanistically, the incorporation of select metal centers within the carbon scaffolds in the form of M–N bonds leads to activation of multiple atomic sites in close proximity, which collectively contribute to the ORR activity. Thus, the exact atomic configuration is found to play a key role in determining the adsorption of critical reaction intermediates and the eventual catalytic performance. Furthermore, recent studies have shown that the carbon topological defects are another important variable that can be exploited for further enhancement of the electocatalytic activity, in particular, to develop SACs that are selective for the four-electron oxygen reduction pathway.

It should be recognized that despite the progress, it remains challenging to unify the mechanistic accounts for the ORR activity. In fact, one can see that there exist apparent discrepancy among leading studies in the literature. This is primarily because most carbon SACs are prepared pyrolytically and exhibit structural complexity, and the nonuniformity within even the same batch of sample further compounds the issue, whereas in theoretical modeling, the structures are highly simplified and short-ranged. This inevitably creates a gap between the theoretical model and the actual structure, raising questions about the validity of the identification of the ORR active sites by a correlation between the experimental work and theoretical modeling and simulations. An immediate question arises. Is it possible to develop de novo bottom-up approaches to the fabrication of carbon-based SACs? It will no doubt be a daunting undertaking. Yet the well-defined structures will allow for a reliable correlation between experiment and theory. Furthermore, extensive progress in organometallic chemistry can be exploited to extend the study to a wide range of coordination chemistry, within the context of metal centers, coordinat- ing ligands, metal–ligand charge transfer, metal–metal charge transfer, and so on. Furthermore, to aid in the unravelling of the fundamental mechanisms of catalytic reactions, development of effective tools for in situ spectroscopic/microscopic measurements is equally important. Some of these are actually being pursued.

Acknowledgements

This work was supported in part by the National Science Foundation (CHE-1710408 and CHE-1900235). QXL acknowledges a research fellowship from the Shanghai Municipal Education Commission.

References

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

FeNx loaded on nanowrinkled N-doped carbon outperforms commercial Pt/C towards ORR in alkaline media.

19. Yang ZK, Chen BX, Chen WX, Qu YT, Zhou FY, Zhao CM, Xu Q, Zhang QH, Duan XZ, Wu Y. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat Commun 2019, 10:3734, Cu-Nx-C exhibits a higher ORR activity compared to commercial Pt/C in alkaline media, where the defective Cu–N3– is argued to be the active site.

39. Dual Co sites embedded in N-doped carbon provide efficient active sites towards ORR in acid, with a performance comparable to that of commercial Pt/C and better than that of Fe SAC and Co SAC.

43. Dual metal sites in Fe2–N–C allow for a bridge-like adsorption of O2, which is more beneficial for the dissociation of the intermediates than the single-atom Fe1–N–C.

