CHAPTER 7 PROPERTIES OF REAL GASES

• Real gases: finite size of molecules and intermolecular interactions
• Chemical potential defined by fugacity rather than pressure

Real Gases and Ideal Gases

• Ideal Gas
 • molecules are point masses; molecules do not interact
 • Experimental Approximation: low density and high temperature
 • Equation of state \(PV = nRT \)
• Real Gas
 • Van der Waals equation of state
 \[
 P = \frac{RT}{V_m - b} - \frac{a}{V_m (V_m + b)} = \frac{nRT}{V - nb} - \frac{n^2a}{\sqrt{T} V(V + nb)}
 \]
 • Redlich-Kwong equation of state
Isotherms for CO₂ at (a) 426 K and (b) 329 K using the vdW equation (purple curve), the R-K equation (blue curve) and the ideal gas equation (red curve). Black dots are accurate values taken from NIST.

Other Equations of State

- Beattie-Bridgeman equation of state

\[P = \frac{RT}{V_m^2} \left(1 - \frac{c}{V_m T^3} \right) (V_m + B) - \frac{A}{V_m^2} \text{ with} \]

\[A = A_0 \left(1 - \frac{a}{V_m} \right) \quad \text{and} \quad B = B_0 \left(1 - \frac{b}{V_m} \right) \]

- Virial equation of state

\[P = RT \left[\frac{1}{V_m} + \frac{B(T)}{V_m^2} + \ldots \right] \]
Isotherms for CO$_2$ as a vdW Gas

- Critical temperature (T_c): critical constants (P_c, V_c, T_c)

\[\left(\frac{\partial P}{\partial V_m} \right)_{T=T_c} = 0 \] and \[\left(\frac{\partial^2 P}{\partial V_m^2} \right)_{T=T_c} = 0 \]

- No clear interface between liquid and gas

Compression Factor

- Definition

\[z = \frac{V_m}{V_m^{ideal}} = \frac{PV_m}{RT} \]

- $z = 1$: ideal gas
- $z > 1$: real gas exert a greater pressure than ideal gas
- $z < 1$: real gas exert a smaller pressure than ideal gas
Boyle Temperature \(T_B = \frac{a}{Rb} \)

- At Boyle temperature, both \(z \rightarrow 0 \) and \(\left(\frac{\partial z}{\partial P} \right)_T \rightarrow 0 \), which is the behavior of an ideal gas

<table>
<thead>
<tr>
<th>Gas</th>
<th>(T_B) (K)</th>
<th>Gas</th>
<th>(T_B) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>23</td>
<td>O₂</td>
<td>400.</td>
</tr>
<tr>
<td>H₂</td>
<td>110.</td>
<td>CH₄</td>
<td>510.</td>
</tr>
<tr>
<td>Ne</td>
<td>122</td>
<td>Kr</td>
<td>575</td>
</tr>
<tr>
<td>N₂</td>
<td>327</td>
<td>Ethene</td>
<td>735</td>
</tr>
<tr>
<td>CO</td>
<td>352</td>
<td>H₂O</td>
<td>1250</td>
</tr>
</tbody>
</table>

Law of Corresponding States

- Using the critical constants as a point of reference

\[
P_rP_c = \frac{RT_fT_c}{V_{mr}V_{mc} - b} - \frac{a}{V_{mr}^2V_{mc}^2}
\]

\[
P_c = \frac{a}{27b^2}, \quad V_{mc} = 3b, \quad \text{and} \quad T_c = \frac{8a}{27Rb}
\]

\[
\frac{a P_r}{27b^2} = \frac{8aT_r}{27b(3bV_{mr} - b)} - \frac{a}{9b^2V_{mr}^2}
\]

or

\[
P_r = \frac{8T_r}{3V_{mr} - 1} - \frac{3}{V_{mr}^2}
\]
Fugacity and Equilibrium Constant

- Ideal gas \(\mu(T, P) = \mu^o(T) + RT \ln \frac{P}{P^o} \)
- Real gas \(\mu(T, P) = \mu^o(T) + RT \ln \frac{f}{f^o} \)
- Fugacity \(f \) = effective pressure

Quantification of Fugacity

- For any gas at constant \(T \)

\[
dG_m = V_mD_P \left[d\mu_{\text{ideal}} = V^\text{ideal}_m dP \right] d\mu_{\text{real}} - d\mu_{\text{ideal}} = (V^\text{real}_m - V^\text{ideal}_m) dP
\]

\[
\int_{P_I}^{P} (d\mu_{\text{real}} - d\mu_{\text{ideal}}) = [\mu_{\text{real}}(P) - \mu_{\text{real}}(P_I)] - [\mu_{\text{ideal}}(P) - \mu_{\text{ideal}}(P_I)]
\]

\[
= \int_{P_I}^{P} (V^\text{real}_m - V^\text{ideal}_m) dP
\]

\[
\mu_{\text{real}}(P) - \mu_{\text{ideal}}(P) = \int_{0}^{P} (V^\text{real}_m - V^\text{ideal}_m) dP'
\]

\[
\ln f = \ln P + \frac{1}{RT} \int_{0}^{P} (V^\text{real}_m - V^\text{ideal}_m) dP'
\]