CHEM 163B Prelim II, 11:00 AM – 12:10 PM, March 2, 2016

Name ________________________ SID ________________________ Section ________________________

<table>
<thead>
<tr>
<th>Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R = 8.314 \text{ J/Kmol;} 1 \text{ bar} = 10^5 \text{ Pa;} 1 \text{ atm} = 1.01 \times 10^5 \text{ Pa})</td>
</tr>
</tbody>
</table>

1. (20 points) **True or False?**
 a. A change of state from state 1 to state 2 produces a greater increase in entropy when carried out irreversibly than when done reversibly. (TRUE) (FALSE)
 b. For a reversible process in a closed system, \(dq \) is equal to \(TdS \) (TRUE) (FALSE)
 c. For an adiabatic process in a closed system, because \(q = 0 \), \(\Delta S \) must also be zero. (TRUE) (FALSE)
 d. \(U, H, S, A, \) and \(G \) all have the same dimensions. (TRUE) (FALSE)
 e. \(\Delta S_{\text{fusion}} \) and \(\Delta S_{\text{evaporation}} \) are always positive. (TRUE) (FALSE)
 f. For a closed system, \(\Delta S \) can never be negative. (TRUE) (FALSE)
 g. Since \(G = H - TS \), \(dG = dH - TdS \) is applicable to all processes. (TRUE) (FALSE)
 h. \(G \) is an extensive variable and \(\mu \) is an intensive variable. (TRUE) (FALSE)
 i. At equilibrium, \(\Delta G = 0 \) and \(\Delta S = 0 \). (TRUE) (FALSE)
 j. For a chemical reaction involving only ideal gases, the equilibrium constant varies with reaction temperature. (TRUE) (FALSE)

2. (20 pts) Please state the second and third laws of thermodynamics

 Second law of thermodynamics:

 Third law of thermodynamics:
3. (25 pts). Two adiabatic containers (10 L each) are connected by a valve. Initially, one of them contains 2 mole of an ideal gas, and the other is vacuum. At 300 K, the valve is opened, and the gas is expanded into the other container. Calculate ΔU, ΔH, ΔS, ΔA and ΔG involved?

$Q = 0, \quad W = 0. \quad \therefore \Delta U = 0, \quad \Delta T = 0$

$\Delta H = 0$

$\Delta S = nR \ln \frac{V_2}{V_1} = 2 \times 8.314 \ln \frac{20}{10}$

$= 11.52 \text{ (J/K)}$

$\Delta A = \Delta G = -T \Delta S = -300 \times 11.52 = -3457.70 \text{ J}$
4. (15 points) The diagram to the right represents a reversible Carnot cycle for an ideal gas.

a. What is the thermodynamic efficiency of the engine?

\[\varepsilon = 1 - \frac{T_L}{T_H} = 1 - \frac{303}{673} = 0.55 \]

\[\varepsilon = \frac{W}{q_H} \]

\[q_H = \frac{W}{\varepsilon} = \frac{600}{0.55} = 1091.35 \text{ (J)} \]

\[q_L = q_H - W = 1091.35 - 600 = 491.35 \text{ (J)} \]
5. (20 pts) Using the definition of $G = H - TS$, show that the exact differential, $dG = -SdT + VdP$. Then derive the Gibbs-Helmholtz equation $\left(\frac{\partial G}{\partial T} \right)_p = -\frac{H}{T^2}$.

\[\left(\frac{\partial G}{\partial T} \right)_p = \frac{1}{T} \left(\frac{\partial G}{\partial T} \right)_p - G \left(\frac{1}{T^2} \right) \]

as $dG = -SdT + VdP$

\[\frac{\partial G}{\partial T} \bigg|_p = -S \]

\[\left(\frac{\partial G}{\partial T} \right)_p = -\frac{S}{T} - \frac{G}{T^2} \]

\[-\frac{S}{T} + \frac{G}{T^2} = -\frac{H}{T^2} \]