RAPID COMMUNICATION

Ultrathin MoO$_3$ nanocrystals self-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life

Kai Zhoua, Weijia Zhoua,* Xiaojun Liua, Yuanhua Sangb, Shaozheng Jib, Wei Lia, Jia Lua, Ligui Lia, Wenhan Niua, Hong Liub, Shaowei Chena,c

aNew Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
bState Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China
cDepartment of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA

Received 22 October 2014; received in revised form 16 December 2014; accepted 8 January 2015
Available online 16 January 2015

KEYWORDS
MoO$_3$; 3D graphene frameworks; Oxygen-bonding; Solid-state symmetric supercapacitor; Electrochemical stability

Abstract
Ultrathin MoO$_3$ nanocrystals were assembled on 3D graphene oxide frameworks via a hydrothermal reaction forming a layered structure by oxygen-bonding interactions at the interface. The structure and morphology of the resulting MoO$_3$-GAs hybrids were characterized by a range of experimental tools including atomic force microscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, infrared and Raman spectroscopy. Because of abundant exposed active sites of the ultrathin MoO$_3$ and rapid ion diffusion and electron transport of 3D graphene frameworks, the resulting MoO$_3$-GAs hybrids possess the highest specific capacitances and excellent cycling stability in both aqueous (527 F g$^{-1}$ at the current density of 1.0 A g$^{-1}$, 100% retention after 10,000 cycles) and solid electrolytes (373 F g$^{-1}$ at 1.0 A g$^{-1}$, 100% retention after 5,000 cycles) among leading literature results of similar systems.

© 2015 Elsevier Ltd. All rights reserved.
Introduction

Supercapacitors are a promising class of energy storage devices due to their high power density, ultrafast charging/discharging rate and excellent cycle performance, which show potential applications for hybrid electric vehicles, consumer electronics, backup energy systems, etc [1-4]. In recent years, extensive research has been devoted to the design and engineering of new materials and structures to further improve their electrochemical performance, for instance, using pseudocapacitors which store charges through fast reversible Faradaic reactions [5-7]. Among these, layered transition metal oxides/hydroxides, such as MnO₂ [8], Co (OH)₂ [9], V₂O₅ [10], and Ni(OH)₂ [11], have been extensively explored as supercapacitor electrodes for the enhancement of specific capacitance, energy and power density.

In particular, α-MoO₃ is an n-type semiconductor with an anisotropic layered structure along the [0 1 0] direction. The layered structure is formed by stacking bilayer sheets of MoO₃ octahedra with van der Waals forces [12,13]. These structures are presumably advantageous for the insertion/removal of small ions such as H⁺ and K⁺. However, its low electronic conductivity and lack of structural integrity under electrochemical reactions are detrimental to a high-rate and long-term cycling performance in electrochemical devices [14-16]. Therefore, it remains a challenge to use MoO₃ as supercapacitor electrodes, because the capacitance may diminish significantly in a prolonged charge-discharge cycling process. For example, Kim et al. reported that the capacitance of structured MoO₃ diminished by 18% after only 1000 cycles of charging and discharging [17]. Li et al. also reported a significant loss of 25% of the capacitance of α-MoO₃ after only 1000 cycles [18]. This is the primary motivation of the present study in which we employ two effective strategies to overcome this attenuation problem: (i) fabrication of ultrathin MoO₃ nanocrystals on the surface of mechanically robust graphene nanosheets leading to a high electrochemically active surface area for faradic reactions at the defects and grain boundaries of the crystalline lattices, and (ii) formation of strong chemical contacts between the ultrathin MoO₃ nanocrystals and graphene via oxygen bonding to facilitate interfacial charge transfer and to reduce the loss of active materials.

Graphene with large specific surface area, high electrical conductivity, excellent mechanical properties and chemical stability, has shown great potential for supercapacitor electrode materials [19-22]. However, because of easy restacking of the graphene nanosheets due to strong π-π interactions, supercapacitor electrodes based directly on graphene sheets did not display the expected high rate performance. A variety of three-dimensional (3D) graphene materials, for example, graphene hydrogels [23-26] and graphene papers [27-28], which contain continuously interconnected pores structures with high surface area-to-volume ratios have been developed to overcome the restacking problems of graphene sheets. At the same time, due to their outstanding electrical properties and mechanical flexibility, monolithic 3D graphene has been widely explored as electrode materials for solid-state supercapacitors, which are considered as promising smart and efficient energy-storage devices [24,29,30].

In this work, ultrathin MoO₃ nanocrystals were epitaxially grown on the surface of graphene oxide (GO) nanosheets that self-assembled into 3D aerogels (MoO₃-GAs). A variety of experimental techniques including atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), infrared and Raman spectroscopy were used to characterize the resulting composite structure and interfacial bonding between the MoO₃ nanocrystals and graphene nanosheets. Electrochemical studies showed that MoO₃-GAs might be used as effective supercapacitor electrodes with an excellent specific capacitance of 586 F g⁻¹ at the scan rate of 50 mV s⁻¹ and 527 F g⁻¹ at the current density of 1.0 A g⁻¹ in 1.0 M H₂SO₄ aqueous electrolyte in a three-electrode configuration. Remarkably, the electrode materials also exhibited excellent stability in long-term cycling in both aqueous (at a current density of 10.0 A g⁻¹, 100% retention after 10,000 cycles) and solid electrolytes (at a current density of 1.0 A g⁻¹, 100% retention after 5000 cycles). To our knowledge, this is the best supercapacitor performance, in particular, with regard to specific capacitance and cycling stability, as compared to those reported in the literature of Mo-based supercapacitor electrode materials.

Experimental section

Materials

Sodium molybdate (Na₂MoO₄·2H₂O), graphite powers, potassium persulfate (K₂S₂O₈), phosphorus pentoxide (P₂O₅), potassium permanganate (KMnO₄), hydrogen peroxide (H₂O₂) and dimethylformamide (DMF) were purchased from Sinopharm Chemical Reagents Co., Ltd. All reagents were of analytical grade, and used without further purification. Deionized water was supplied with a Barnstead Nanopure Water System (18.3 MΩ cm).

Synthesis of MoO₃-GAs

Graphene oxide (GO) was prepared by a modified Hummers method using natural graphite flakes as the starting materials [31]. MoO₃-graphene aerogels (MoO₃-GAs) were synthesized by a combined hydrothermal and freeze-drying method. In a typical procedure, 15 mL of a GO (4.0 mg mL⁻¹) solution in DMF containing 50 mg of sodium molybdate was dispersed evenly by ultrasonic agitation to obtain an emulsion. The resulting dispersion was sealed in a Teflon-lined autoclave, and heated at 200 °C for 24 h. After the autoclave naturally cooled to room temperature, the as-prepared graphene hydrogel was taken out and cleaned with deionized water several times until the solution became clear, followed by freeze-drying at −45 °C for 24 h. For comparison, pristine graphene oxide aerogels (GAs), and MoO₃-GAs at other MoO₃ loadings were also prepared in a similar fashion with GO solution: 10 mg of sodium molybdate to prepare a lower MoO₃ loading of MoO₃-GAs (L-MoO₃-GAs), and 100 mg to a higher MoO₃ loading sample (H-MoO₃-GAs).

Structural characterizations

The microstructural and morphological details of the samples were examined with a NOVA NANOSEM 430 field emission
scanning electron microscope (FESEM) and a JEOL JEM-2100 transmission electron microscope (TEM) at an acceleration voltage of 200 kV. AFM measurements were performed using a Nanosurf EasyScan2 instrument (Veeco Dimension 3100). The MoO$_3$-GAs was dispersed in ethanol by ultrasonic agitation to obtain homogeneously dispersed MoO$_3$-graphene nanosheets, which were dropped onto the surface of a clean silicon wafer. Chemical compositions were evaluated by element mapping (Philips Tecnal F20) and XPS (ESCALAB 250) measurements. XRD analysis was performed on a Bruker AXS Discover diffractometer with Cu Kα radiation. Raman spectra were recorded on a RENISHAW inVia instrument with an Ar laser source of 488 nm in a macroscopic configuration. Infrared spectra were acquired with a NICOLET 6700 FTIR spectrometer (Thermo Scientific, USA). The BET surface area was characterized by Micromeritics ASAP 2010 with nitrogen adsorption at 77 K. Thermogravimetric analyses (TGA) was carried out under a steady flow of O$_2$, where the temperature was scanned from 30 to 600 °C at a rate of 10 °C min$^{-1}$.

Electrochemical measurements

The monolithic aerogels were cut into small slices with a thickness of about 1 mm and diameter of about 10 mm, which were further pressed onto titanium meshes as working electrodes. All electrochemical experiments were carried out with a CHI 660E Electrochemical Workstation (CH Instruments, China). In the three-electrode system, a saturated calomel reference electrode (SCE, Hg/Hg$_2$Cl$_2$ in saturated KCl) and a Pt counter electrodes were used along with 1.0 M H$_2$SO$_4$ aqueous electrolyte. In the two-electrode system, two same slices of the aerogel monoliths that were pressed on titanium meshes were directly assembled into a symmetric supercapacitor in a macroscopic configuration. Infrared spectra were acquired with a NICOLET 6700 FTIR spectrometer (Thermo Scientific, USA). The BET surface area was characterized by Micromeritics ASAP 2010 with nitrogen adsorption at 77 K. Thermogravimetric analyses (TGA) was carried out under a steady flow of O$_2$, where the temperature was scanned from 30 to 600 °C at a rate of 10 °C min$^{-1}$.

Specific capacitance C_s (F/g) for symmetric supercapacitors was calculated from the CV and charge-discharge curves by Eqs. (5) and (6), respectively, where I_1 (A) is the response current, ΔV (V) is the voltage window, ν (V/s) is the scan rate, I_2 (A) is the constant discharge current, Δt (s) is the discharging time and m_2 (g) is the total mass of two electrodes.

$$C_s = \frac{4f_1dV}{vm_2\Delta V}$$

(5)

$$C_s = \frac{4I_2\Delta t}{m_2\Delta V}$$

(6)

Result and discussion

As manifested in SEM studies (Figure 1a and b), the as-prepared MoO$_3$-GAs exhibited a 3D interconnected porous network with a smooth surface, where graphene sheets most likely served as the structural scaffolds. Note that MoO$_3$-GAs might be exfoliated and dispersed in ethanol by ultrasonic agitation forming a homogeneous solution of MoO$_3$/graphene nanosheets. AFM topographic studies showed that the height of the MoO$_3$/graphene nanosheets was rather uniform at ~2.0 nm (Figure 1c and S1), signifying that MoO$_3$ were likely evenly distributed on the surface of the graphene nanosheets which served as a structural unit in the MoO$_3$-GAs hybrids (vide infra). Note that the resolution of SEM and AFM were not high enough to identify the exact location of the MoO$_3$ nanocrystals (MoO$_3$-GAs was not detected in XRD measurements either, because of small size and low loading, Figure S2a). A broad diffraction peak centered at around 24.5° in Fig. S2a was assigned to the graphite (0 0 2), because of reduction of oxygen functional groups in graphene [24,32]. However, the XRD pattern of H-MoO$_3$-GAs in Figure S2b exhibited three diffraction peaks at 2θ=12.8°, 25.7° and 39.0°, characteristic of the (0 2 0), (0 4 0) and (0 6 0) diffraction planes of MoO$_3$ (JCPDS no. 05-0508), respectively. Then, the loading amount of MoO$_3$ was measured by TGA measurements (Figure S3). It can be seen that the MoO$_3$ loading was quantified at 4.8 wt%, 18.6 wt%, 30.8 wt% of for L-MoO$_3$-GAs, MoO$_3$-GAs and H-MoO$_3$-GAs, respectively.

The formation of MoO$_3$-GAs composites was readily manifested in FTIR measurements, as depicted in Figure 1d. It can be seen that several prominent vibrational bands appear at 1571 cm$^{-1}$, 1401 cm$^{-1}$, and 1180 cm$^{-1}$ with both MoO$_3$-GAs (black curve) and pristine GAs (red curve). These may be assigned to the C=C, C–C and C–O functional moieties of the graphene nanosheets, respectively. For the MoO$_3$-GAs composites, however, several additional vibrational bands emerged within the range of 500-1000 cm$^{-1}$. Of these, the vibrational bands at 945 cm$^{-1}$ and 896 cm$^{-1}$ might be assigned to the Mo-O terminal oxygen stretching vibrations, while the peaks at 616 cm$^{-1}$ and 779 cm$^{-1}$ were likely due to the stretching vibrations of oxygen linked with two or three molybdenum atoms, respectively [16,33,34]. Consistent results were obtained in Raman measurements, as depicted in the inset to Figure 1d. One can see that after MoO$_3$ was deposited onto the
graphene sheets (black curve), the graphene D and G bands red-shifted somewhat to 1352 and 1589 cm\(^{-1}\) from 1344 and 1584 cm\(^{-1}\) of the pristine graphene aerogels (GAs, red curve), along with an increase of the ratio of the their intensities (I\(_D\)/I\(_G\)) to 1.14 from 1.05. This may be accounted for the enhanced defect structures of the graphene nanosheets upon the loading of MoO\(_3\) [35].

Further morphological details were resolved in (HR)TEM analyses, which provided direct evidence of ultrathin MoO\(_3\) nanocrystals self-assembled on graphene oxide nanosheets. Figure 2a and b shows that the MoO\(_3\)/graphene nanosheets exhibited a highly wrinkled surface; and MoO\(_3\) nanocrystals can be seen to be rather evenly distributed on the surface of the graphene nanosheets, as manifested in high-resolution measurements (Figure 2c) where well-defined lattice fringes can be resolved and the interplanar spacing of 0.38 nm is consistent with the (1 1 0) crystalline planes of MoO\(_3\) that were perpendicular to the graphene nanosheets. These observations were in good agreement with results in AFM study (Figure 1c). The crystalline properties of the composites were also examined by selected area electron diffraction (Figure S4) that clearly signified the formation of polycrystalline MoO\(_3\) nanocrystals on graphene nanosheets. Note that MoO\(_3\) is a layered semiconductor with an anisotropic layered structure along the [0 1 0] direction (Figure 2d). The layered structure is formed by stacking bilayer sheets of MoO\(_6\) octahedra by van der Waals forces [36,37]. The thickness of a single layer of MoO\(_3\) octahedra is about 0.7 nm, and a MoO\(_3\)/graphene sheet/ MoO\(_3\) sandwich structure is about 1.7 nm in thickness. This is in good agreement with the thickness determined by AFM measurements of the MoO\(_3\)/graphene nanosheet composites (Figure 1c), suggesting the formation of MoO\(_3\)/graphene/MoO\(_3\) sandwiched structures. Furthermore, elemental mapping studies of the MoO\(_3\)/graphene composites showed a uniform
distribution of the C, Mo, and O elements (Figure 2g), consistent with results from SEM (Figure 1b), AFM (Figure 1c) and HRTEM (Figure 2b and c) measurements.

XPS measurements were then carried out to characterize the surface elemental compositions and valence states of the MoO$_3$-GAs. As shown in the survey spectrum in Figure 3a, carbon, molybdenum and oxygen were the only elements that could be identified. Deconvolution of the high-resolution scan of the C1s electrons exhibited three peaks at 284.5, 285.5 and 290.2 eV (Figure 3b), corresponding to the C=\(\text{C}\), C=\(\text{O}\) and O=\(\text{C}\)--\(\text{OH}\) carbons, respectively [38]. This suggests the formation of oxygenated functional moieties in graphene oxide nanosheets. For the Mo3d electrons (Figure 3c), a doublet can be identified at 235.6 eV and 232.5 eV, in good agreement with the binding energies of the Mo (VI) 3d$_{3/2}$ and 3d$_{5/2}$ electrons and hence the formation of MoO$_3$ in the composites [37]. For the O1s electrons (Figure 3d), two components can be deconvoluted: O1 at the low binding energy of 530.4 eV which might be assigned to the lattice oxygen in MoO$_3$, whereas the peak at 532.4 eV (O2) to C=\(\text{O}\) of graphene oxide [38,39]. In addition, the survey spectrum of bare GAs was showed in Figure S5a, where carbon and oxygen were the only elements that could be identified. Deconvolution of the high-resolution scan of the O1s electrons exhibited two peaks at 531.1 and 532.4 eV (Figure S5b), corresponding to the C=\(\text{O}\) and C=\(\text{O}\) of graphene oxide, respectively [38]. These comparisons suggest the replacement of C=\(\text{O}\) by Mo in MoO$_3$ forming the C=\(\text{O}\)--\(\text{Mo}\) linkage. Therefore, we concluded that the self-assembly of ultrathin MoO$_3$ nanocrystals on graphene oxide nanosheets were facilitated via oxygen-bonding interactions (C=\(\text{O}\)--\(\text{Mo}\)) at the interface. Furthermore, based on the integrated peak areas, the atomic ratio of Mo/C in MoO$_3$-GAs was estimated to be only 2.6 at%, corresponding to a mass loading of MoO$_3$ in MoO$_3$-GAs at 23.7 wt%. Two additional MoO$_3$-GAs hybrids were prepared in a similar fashion with the corresponding mass contents of MoO$_3$ at about 4.9 wt% (L-MoO$_3$-GAs) and 33.8 wt% (H-MoO$_3$-GAs), respectively, as shown in Figure S6. The results of MoO$_3$ loading estimated from XPS were consistent with those obtained by TGA (Figure S5).

In order to further study the assembly mechanism between MoO$_3$ and graphene nanosheets, a reduced graphene/MoO$_3$ composite (RGO-Mo) was synthesized in the same manner except that reduced graphene oxide prepared by chemical reduction with hydrazine hydrate was used instead of graphene oxide (synthetic details in the Supporting Information). As shown in Figure 4a and b, molybdenum could not be detected in RGO-Mo (red curve), whereas Mo3d and Mo3p could be well-deconventional in MoO$_3$-GAs (black curve). This indicated that MoO$_3$ nanocrystals could not be formed on reduced graphene without dangling oxygen in DMF hydrothermal reaction. Further studies showed that no MoO$_3$ nanocrystals were produced in the absence of graphene oxide nanosheets in DMF hydrothermal reaction (Figure S7). Therefore, it is likely that the oxygenated moieties on the
Graphene oxide nanosheets played an important role in the assembly of ultrathin MoO3 nanocrystals by Mo—O—C bonding linkages at the interface. On the basis of these XPS results (Figs. 3 and 4), the oxygen-bonding structures between graphene oxide and MoO3 were depicted in Figure 2e and f. Note that similar structures have been reported previously, such as Ni(OH)2/graphene [38] and MoS2/graphene [40], where it was reported that oxygen on graphene might affect the structure and morphology of the resulting composites.

Remarkably, the prepared MoO3-GAs composites exhibited a significant performance as supercapacitor electrodes. Cyclic voltammetry (CV) and galvanostatic charge/discharge were employed to examine the electrochemical properties of MoO3-GAs electrodes in an aqueous electrolyte of 1.0 M H2SO4 in a three-electrode (Figure 5) and two-electrode configuration (Figure S8). For comparison, pristine GAs and MoO3 were also tested under the same conditions. Figure 5a shows the CV curves of the GAs and MoO3-GAs electrodes at the scan rate of 50 mV s⁻¹. It can be seen that the GAs exhibits a typical rectangular shape (black curve), implying pure electrical double-layer capacitive behaviors. In contrast, MoO3-GAs displays two pairs of rather well-defined voltammetric peaks (red...
curve) with the formal potentials \((E^1)\) at +0.20 V and +0.30 V, respectively, which might be ascribed to the redox reactions of \(\text{Mo(VI)} \rightleftharpoons \text{Mo(V)} \rightleftharpoons \text{Mo(VI)}\) [18]. Similar results were obtained in CV measurements of pristine MoO3 (Figure S9). Such voltammetric features have also been observed in Li-ion batteries with \(\text{MoO}_3\) electrode [16, 41]. In addition, the peak splitting \((\Delta E_p)\) of the two pairs of voltammetric peaks was only 5.1 mV and 4.8 mV indicating facile electron-transfer kinetics, which is advantageous for pseudo-capacitive contributions. Importantly, from these CV profiles, the \(\text{MoO}_3\)-GAs composites showed an impressive specific capacitance of 586 F g\(^{-1}\) at the scan rate of 50 mV s\(^{-1}\), more than 5-fold larger than that of GAs (122 F g\(^{-1}\)), and markedly higher than that of pristine MoO3 (1.7 F g\(^{-1}\)). Furthermore, in the galvanostatic charge/discharge measurements (Figure 5b), pristine GAs exhibited a rather symmetrical triangular shape (black curve) whereas marked deviation can be seen with \(\text{MoO}_3\)-GAs (red curve), as a result of significant contributions of faradaic capacitance, as described above. The specific capacitance of \(\text{MoO}_3\)-GAs was estimated to be 527 F g\(^{-1}\) at the current density of 1.0 A g\(^{-1}\), while that of GAs was only 91 F g\(^{-1}\). It is worth noting that when normalized to the mass of redox-active \(\text{MoO}_3\) alone the specific capacitance of \(\text{MoO}_3\)-GAs was actually 2223.6 F g\(^{-1}\) at 1.0 A g\(^{-1}\).

As shown in Figure 5c, the voltammetric features of the \(\text{MoO}_3\)-GAs electrode remained virtually unchanged with the potential scan rate varied from 1.0 to 200 mV s\(^{-1}\), consistent with fast electron-transfer kinetics. This was further supported by results from electrochemical impedance analysis (Figure S10). The equivalent series resistance (ESR) of \(\text{MoO}_3\)-GAs was only 1.4 \(\Omega\), close to that of pure GAs (1.2 \(\Omega\)); and the deposition of \(\text{MoO}_3\) nanocrystals on the graphene oxide surface did not appear to affect charge diffusion, as manifested by the similar slope of the low-frequency linear segment of \(\text{MoO}_3\)-GAs and pure GAs. Nevertheless, the arc in the high frequency region exhibits a larger diameter with \(\text{MoO}_3\)-GAs than with GAs alone, which might be ascribed to the redox reactions of ultrathin \(\text{MoO}_3\) nanocrystals deposited on the graphene oxide surface in \(\text{MoO}_3\)-GAs.

Figure 5d depicted the galvanostatic charge/discharge curves of the \(\text{MoO}_3\)-GAs electrode in 1.0 M \(\text{H}_2\text{SO}_4\) aqueous electrolyte at different current densities. The specific capacitances were calculated by the integrated area of the CV curves and discharging time of the galvanostatic charge/discharge curves, respectively. The correlation between the specific capacitance and the scan rate and current density for the \(\text{MoO}_3\)-GAs electrode was presented in Figure 5e. Notably, the specific capacitance of \(\text{MoO}_3\)-GAs showed only a slight decrease to 512 F g\(^{-1}\) at a scan rate of 200 mV s\(^{-1}\) from 755 F g\(^{-1}\) at 1.0 mV s\(^{-1}\). Furthermore, with the increase of the current density up to 10.0 A g\(^{-1}\), the specific capacitance of \(\text{MoO}_3\)-GAs remains at 328 F g\(^{-1}\). The excellent rate capability of the \(\text{MoO}_3\)-GAs electrode could be ascribed to the efficient, fast charge transport of the 3D graphene frameworks.

The electrochemical stability of the \(\text{MoO}_3\)-GAs electrode was also investigated by galvanostatic charge/discharge
measurements at a high current density of 10.0 A g\(^{-1}\) (Figure 5f). The specific capacitance increased slightly at the early stage of cycling (up to 1000 cycles), which may be ascribed to the repetitive charging/discharging cycles that improved ion accessibility in MoO\(_3\)-GAs, leading to increased accommodation for ions, as reported previously [42]. Remarkably, the specific capacitance remained almost invariant at about 380 F g\(^{-1}\) even after 10,000 cycles of charging and discharging. This was in sharp contrast with pristine MoO\(_3\) where only 58.7% of the initial capacitance was retained even at 0.05 A g\(^{-1}\) over 600 cycles (Figure 5d). This result indicated that the 3D graphene frameworks allowed for large strain accommodation during the ion insertion/removal process, and the interactions between MoO\(_3\) and graphene were strong enough to sustain a long cycle life. In order to demonstrate this deduction, SEM, TEM and Raman analysis of the used MoO\(_3\)-GAs electrode after cycling performance have been accomplished. As shown in Figure S11a-b, it can be clearly observed that there was almost no change of the morphology. The nanostructure of used electrode did not present microstructural agglomeration or pulverization issue. MoO\(_3\) nanocrystals still existed on the graphene nanosheets, as manifested in high-resolution SEM, TEM and Raman analysis of the used MoO\(_3\)-GAs electrode in 1.0 M H\(_2\)SO\(_4\) aqueous solution delivered a high energy density of 62 W h kg\(^{-1}\) and a high power density of 320 W kg\(^{-1}\), which remained unchanged after 10,000 cycles (Figure S15) of 3D graphene frameworks [44,45].

The remarkable supercapacitor performance of MoO\(_3\)-GAs could be attributed to the unique structural performance.

CV measurements of the hybrid materials at different mass loading of MoO\(_3\) were also carried out. As shown in Figure S13a and b, the L-MoO\(_3\)-GAs (4.9 wt% by XPS) electrode exhibited a specific capacitance of 321 F g\(^{-1}\) at the scan rate of 50 m V s\(^{-1}\), lower than that of MoO\(_3\)-GAs (23.7 wt%, 586 F g\(^{-1}\)). For H-MoO\(_3\)-GAs (33.8 wt% by XPS), the initial specific capacitance was 554 F g\(^{-1}\) at the scan rate of 50 m V s\(^{-1}\), but the cycling stability was rather poor as the specific capacitance diminished to 323 F g\(^{-1}\) after only 100 cycles. The same cycling stability was also demonstrated by charge-discharge cycles testing (Figure S14). According to the structure and morphology of H-MoO\(_3\)-GAs (Figure S13c and d), two kinds of MoO\(_3\) (ultrathin nanocrystals and large particles) were on the surface of graphene in H-MoO\(_3\)-GAs. The poor cycling stability of H-MoO\(_3\)-GAs is possibly due to the large size and mass loss of the latter large MoO\(_3\) particles on the reduced graphene oxide surface. These results indicate that the mass loading and existence form of MoO\(_3\) on reduced graphene oxide surface is important in the determination of the capacitance performance.

The remarkable supercapacitor performance of MoO\(_3\)-GAs might be accounted for the following factors. Ultrathin MoO\(_3\) nanocrystals facilitated fast and reversible redox reactions, with improved rate capability, and the stacking of monolayers of MoO\(_3\) octahedra on graphene nanosheets that was advantageous to insertion/removal of small ions such as H\(^+\) and K\(^+\). Usually, a large resistance occurred when the H\(^+\) and K\(^+\) ions were inserted into multilayers and blocks of layered compounds that may cause structural fatigue of the materials. In the present study, ultrathin MoO\(_3\) nanocrystals were assembled onto graphene nanosheets via strong oxygen-bonding interactions where ion diffusion was facilitated by the highly porous structures and electron transport effected by the Mo\(\cdots\)O\(\cdots\)C interfacial bonding linkages, as manifested by the high electrical conductivity and specific surface area (154.6 m\(^2\) g\(^{-1}\), Figure S15) of 3D graphene frameworks [44,45].

The as-obtained MoO\(_3\)-GAs can be cut into small pieces with good mechanical flexibility. These may then be assembled into a solid-state symmetric supercapacitor using a gel electrolyte (Figure 6a). The electrochemical performance of the as-fabricated devices was shown in Figure 6b-f. The almost rectangular CV curves and triangular galvanostatic charge-discharge curves of the device in Figure 6b c demonstrate a typical capacitive behavior. As shown in Figure 6d, the MoO\(_3\)-GAs based device delivered a specific capacitance of 373 F g\(^{-1}\) at 1.0 m V s\(^{-1}\) and 181 F g\(^{-1}\) at 100 m V s\(^{-1}\). The excellent performance of MoO\(_3\)-GAs could be attributed to the unique structural

Table 1

Summary of supercapacitor performance of graphene (or carbon nanotubes) and Mo based supercapacitor electrodes in a three-electrode configuration.

<table>
<thead>
<tr>
<th>Electrode materials</th>
<th>Electrolyte</th>
<th>Specific capacitance</th>
<th>Cycling stability</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoO(_3)-GAs</td>
<td>1 M H(_2)SO(_4)</td>
<td>755 F g(^{-1}) at 1.0 m V s(^{-1})</td>
<td>10,000 (100%)</td>
<td>This work</td>
</tr>
<tr>
<td>RGO/(\alpha)-MoO(_3)</td>
<td>1 M Na(_2)SO(_4)</td>
<td>291 F g(^{-1}) at 2 m V s(^{-1})</td>
<td>No result</td>
<td>14</td>
</tr>
<tr>
<td>MoO(_3)/SWNT</td>
<td>1 M LiClO(_4) propylene carbonate</td>
<td>540 F g(^{-1}) at 0.1 m V s(^{-1})</td>
<td>No result</td>
<td>43</td>
</tr>
<tr>
<td>Mo(_2)S/RGO</td>
<td>1 M HClO(_4)</td>
<td>265 F g(^{-1}) at 10 m V s(^{-1})</td>
<td>1000 (97%)</td>
<td>40</td>
</tr>
<tr>
<td>MoO(_3)/hybrids</td>
<td>1 M H(_2)SO(_4)</td>
<td>135 F g(^{-1}) at 1.3 A g(^{-1})</td>
<td>1000 (82%)</td>
<td>17</td>
</tr>
<tr>
<td>MoO(_3)/MWCNT</td>
<td>1 M LiClO(_4) propylene carbonate</td>
<td>103 F g(^{-1}) at 25 m V s(^{-1})</td>
<td>1000 (80%)</td>
<td>15</td>
</tr>
<tr>
<td>(\alpha)-MoO(_3) nanorods</td>
<td>1 M Na(_2)SO(_4)</td>
<td>214 F g(^{-1}) at 0.1 A g(^{-1})</td>
<td>1000 (71.7%)</td>
<td>18</td>
</tr>
</tbody>
</table>
features of the graphene oxide aerogels and the ultrathin MoO3 nanocrystals.

The MoO3-GAs based solid-state supercapacitors can be used to light a commercial red light-emitting diode (LED). Galvanostatic charge/discharge measurements showed that the potential window reached 0.8 V for a single device after being charged at 1 A g⁻¹ for about 48 s; and when three devices of an equal mass loading were connected in series, the potential window reached 2.4 V (Figure 6e), which could easily light up a red LED after being fully charged, as manifested in the inset to Figure 6e. Electrochemical stability is another important property for practical applications of all-solid-state flexible supercapacitors. The performance durability was further evaluated using galvanostatic charge/discharge at a current density of 1.0 A g⁻¹. The device capacitance exhibited no obvious change even after 5000 charge/discharge cycles (Figure 6f).

Conclusions

In summary, we have described an effective strategy to prepare 3D supercapacitor electrodes based on the self-assembly of ultrathin MoO3 nanocrystals on graphene oxide nanosheets. The layered structure between ultrathin MoO3 nanocrystals and graphene nanosheets was fabricated via oxygen-bonding interactions at the interface, which facilitated charge transport in the perpendicular direction. Moreover, with abundant exposed active site of ultrathin MoO3 nanocrystals and 3D porous graphene frameworks, the MoO3-GAs composites exhibited rapid ion diffusion and electron transport, leading to a remarkable performance as electrode materials for supercapacitors. To our knowledge, the performance is the best among those reported in the literature with a high specific capacitances and excellent cycling stability in both aqueous (527 F g⁻¹ at the current density of 1.0 A g⁻¹, 100% retention after 10,000 cycles) and solid electrolytes (373 F g⁻¹ at 1.0 A g⁻¹, 100% retention after 5000 cycles). Such a remarkable performance is of significance in the design and fabrication of high-performance and long-lasting charge storage devices.

Acknowledgements

The authors thank Mr. Longji Shi for assistance in data processing. This work was supported by the National Recruitment Program of Global Experts, the PhD Start-up Funds of the Natural Science Foundation of Guangdong Province (S2013040016465), Zhubian New Stars of Science & Technology (2014J2200061), and the Fundamental Research Funds for Central Universities (x2hjD2131690), China.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.nanoen.2015.01.017.
Shaozheng Ji is currently a master student of Materials Physics and Chemistry at Shandong University under the supervision of Prof. Hong Liu. He obtained his B.S. degree in Materials Physics at Shandong University, China in 2012. His current research interest focuses on the synthesis of one-dimensional metal oxide semiconductors and their application for photodetector and gas sensor.

Wei Li is currently pursuing a master’s degree under the supervision of Prof. Shaowei Chen in the School of Environment and Energy at the South China University of Technology, China. His research is focused on the synthesis of conductive organic films for solar cells and gas sensor.

Jia Lu is currently pursuing a Master under the supervision of Dr. Weijia Zhou and Prof. Shaowei Chen in the school of Environment and Energy at South China University of Technology, China. Her research is focused on the synthesis of nanomaterials as electrocatalyst for oxygen reduction reaction.

Ligui Li obtained a B.Sc. degree from Jilin University in 2004 and received Ph.D. degree from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 2010. He then started postdoctoral research in collaboration with Professor Hai-feng Ji at Drexel University in 2010 and Professor Ling Zang at the University of Utah in 2011, respectively. In 2013, he became an associate professor of the College of Environment and Energy at South China University of Technology. His recent research interests include organic/polymer opto-electronic materials, preparation of high performance organic/polymer solar cells and perovskite solar cells, and nanomaterials for electrochemical applications.

Wenhan Niu received his Master’s degree from Wuhan University of Technology in 2012 and he is pursuing his Ph.D. degree under the supervision of Prof. Shaowei Chen in electrochemistry and novel functional nanomaterials in South China University of Technology. He is interested in organometal halide perovskites solar cells, highly conducting materials for organic electronics and electrochemical applications.

Hong Liu is professor in State Key Laboratory of Crystal Materials, Shandong University, and adjunct professor in Beijing Institute of Nanoenergy and Nanosystem, CAS. He has published over 250 peer reviewed paper, such as, Adv. Mater., J. Am. Chem. Soc., Nano Letters, etc., and published more than 25 patents. He was awarded as Distinguished Young Scholar by NNSF and Professor of Hundred Talents Program of CAS. His current research is focused mainly on nonlinear crystal growth, chemical processing of nanomaterials for energy related applications including photocatalysis, tissue engineering, especially the interaction between stem cell and nanostructure of biomaterials.

Shaowei Chen obtained a B.Sc. degree from the University of Science and Technology of China, and then went to Cornell University receiving his M.Sc. and Ph.D. degrees in 1993 and 1996. Following a postdoctoral appointment in the University of North Carolina at Chapel Hill, he started his independent career in Southern Illinois University in 1998. In 2004, he moved to the University of California at Santa Cruz and is currently a Professor of Chemistry. He is also an adjunct professor at South China University of Technology. His research interest is primarily in the electron transfer chemistry of nanoparticle materials.